Notice the sequential patterns Maple gives for an output to the following:

Digits := 96; floor(evalf((10^100+1)*(1/9801)))

which gives 1020304050607080910111213141516171819202122232425262728293031323334353637383940414243444546474850

and

evalf((10^100+1)*(1/9801)-floor((10^100+1)*(1/9801)))

which gives 0.505254565860626466687072747678808284868890929496990103050709111315171921232527293133353739414345

.

The first one is similar to Sloan's A034948. That does make since because10^100+1 is approx 1*10^100. But where does the second pattern come from?

 


Please Wait...