Applications, Examples and Libraries

Share your work here

Problem statement:
Determine the relativistic uniformly accelerated motion, i.e. the rectilinear motion for which the acceleration w in the proper reference frame (at each instant of time) remains constant.

As an application of the post presented by Dr Cheb Terrab in MaplePrimes on the principle of relativity ( found here ), we solve the problem stated on page 24 of Landau & Lifshitz book [1], which makes use of the relativistic invariant condition of the constancy of a four-scalar, viz., `w__μ`*w^mu where w^mu is the four-acceleration. This little problem exemplify beautifully how to use invariance in relativity. This is the so-called hyperbolic motion and we explain why at the end of this worksheet.

NULL

let's introduce the coordinate system, X = (x, y, z, tau)with tau = c*t 

with(Physics)

Setup(coordinates = [X = (x, y, z, tau)])

[coordinatesystems = {X}]

(1)

%d_(s)^2 = g_[lineelement]

%d_(s)^2 = -Physics:-d_(x)^2-Physics:-d_(y)^2-Physics:-d_(z)^2+Physics:-d_(tau)^2

(2)

NULL

Four-velocity

 

The four-velocity is defined by  u^mu = dx^mu/ds and dx^mu/ds = dx^mu/(c*sqrt(1-v^2/c^2)*dt) 

Define this quantity as a tensor.

Define(u[mu], quiet)

The four velocity can therefore be computing using

u[`~mu`] = d_(X[`~mu`])/%d_(s(tau))

u[`~mu`] = Physics:-d_(Physics:-SpaceTimeVector[`~mu`](X))/%d_(s(tau))

(1.1)

NULL

As to the interval d(s(tau)), it is easily obtained from (2) . See Equation (4.1.5)  here with d(diff(tau(x), x)) = d(s(tau)) for in the moving reference frame we have that d(diff(x, x)) = d(diff(y(x), x)) and d(diff(y(x), x)) = d(diff(z(x), x)) and d(diff(z(x), x)) = 0.

 Thus, remembering that the velocity is a function of the time and hence of tau, set

%d_(s(tau)) = d(tau)*sqrt(1-v(tau)^2/c^2)

%d_(s(tau)) = Physics:-d_(tau)*(1-v(tau)^2/c^2)^(1/2)

(1.2)

subs(%d_(s(tau)) = Physics[d_](tau)*(1-v(tau)^2/c^2)^(1/2), u[`~mu`] = Physics[d_](Physics[SpaceTimeVector][`~mu`](X))/%d_(s(tau)))

u[`~mu`] = Physics:-d_(Physics:-SpaceTimeVector[`~mu`](X))/(Physics:-d_(tau)*(1-v(tau)^2/c^2)^(1/2))

(1.3)

Rewriting the right-hand side in components,

lhs(u[`~mu`] = Physics[d_](Physics[SpaceTimeVector][`~mu`](X))/(Physics[d_](tau)*(1-v(tau)^2/c^2)^(1/2))) = Library:-TensorComponents(rhs(u[`~mu`] = Physics[d_](Physics[SpaceTimeVector][`~mu`](X))/(Physics[d_](tau)*(1-v(tau)^2/c^2)^(1/2))))

u[`~mu`] = [Physics:-d_(x)/(Physics:-d_(tau)*(-(v(tau)^2-c^2)/c^2)^(1/2)), Physics:-d_(y)/(Physics:-d_(tau)*(-(v(tau)^2-c^2)/c^2)^(1/2)), Physics:-d_(z)/(Physics:-d_(tau)*(-(v(tau)^2-c^2)/c^2)^(1/2)), 1/(-(v(tau)^2-c^2)/c^2)^(1/2)]

(1.4)

Next we introduce explicitly the 3D velocity components while remembering that the moving reference frame travels along the positive x-axis

NULL

simplify(u[`~mu`] = [Physics[d_](x)/(Physics[d_](tau)*(-(v(tau)^2-c^2)/c^2)^(1/2)), Physics[d_](y)/(Physics[d_](tau)*(-(v(tau)^2-c^2)/c^2)^(1/2)), Physics[d_](z)/(Physics[d_](tau)*(-(v(tau)^2-c^2)/c^2)^(1/2)), 1/(-(v(tau)^2-c^2)/c^2)^(1/2)], {d_(x)/d_(tau) = v(tau)/c, d_(y)/d_(tau) = 0, d_(z)/d_(tau) = 0}, {d_(x), d_(y), d_(z)})

u[`~mu`] = [v(tau)/(c*((c^2-v(tau)^2)/c^2)^(1/2)), 0, 0, 1/(-(v(tau)^2-c^2)/c^2)^(1/2)]

(1.5)

Introduce now this explicit definition into the system

Define(u[`~mu`] = [v(tau)/(c*((c^2-v(tau)^2)/c^2)^(1/2)), 0, 0, 1/(-(v(tau)^2-c^2)/c^2)^(1/2)])

{Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], u[mu], w[`~mu`], w__o[`~mu`], Physics:-LeviCivita[alpha, beta, mu, nu], Physics:-SpaceTimeVector[mu](X)}

(1.6)

NULL

Computing the four-acceleration

 

This quantity is defined by the second derivative w^mu = d^2*x^mu/ds^2 and d^2*x^mu/ds^2 = du^mu/ds and du^mu/ds = du^mu/(c*sqrt(1-v^2/c^2)*dt)

Define this quantity as a tensor.

Define(w[mu], quiet)

Applying the definition just given,

w[`~mu`] = d_(u[`~mu`])/%d_(s(tau))

w[`~mu`] = Physics:-d_[nu](u[`~mu`], [X])*Physics:-d_(Physics:-SpaceTimeVector[`~nu`](X))/%d_(s(tau))

(2.1)

Substituting for d_(s(tau))from (1.2) above

subs(%d_(s(tau)) = Physics[d_](tau)*(1-v(tau)^2/c^2)^(1/2), w[`~mu`] = Physics[d_][nu](u[`~mu`], [X])*Physics[d_](Physics[SpaceTimeVector][`~nu`](X))/%d_(s(tau)))

w[`~mu`] = Physics:-d_[nu](u[`~mu`], [X])*Physics:-d_(Physics:-SpaceTimeVector[`~nu`](X))/(Physics:-d_(tau)*(1-v(tau)^2/c^2)^(1/2))

(2.2)

Introducing now this definition (2.2)  into the system,

Define(w[`~mu`] = Physics[d_][nu](u[`~mu`], [X])*Physics[d_](Physics[SpaceTimeVector][`~nu`](X))/(Physics[d_](tau)*(1-v(tau)^2/c^2)^(1/2)), quiet)

lhs(w[`~mu`] = Physics[d_][nu](u[`~mu`], [X])*Physics[d_](Physics[SpaceTimeVector][`~nu`](X))/(Physics[d_](tau)*(1-v(tau)^2/c^2)^(1/2))) = TensorArray(rhs(w[`~mu`] = Physics[d_][nu](u[`~mu`], [X])*Physics[d_](Physics[SpaceTimeVector][`~nu`](X))/(Physics[d_](tau)*(1-v(tau)^2/c^2)^(1/2))))

w[`~mu`] = Array(%id = 36893488148327765764)

(2.3)

Recalling that tau = c*t, we get

"PDETools:-dchange([tau=c*t],?,[t],params=c)"

w[`~mu`] = Array(%id = 36893488148324030572)

(2.4)

Introducing anew this definition (2.4)  into the system,

"Define(w[~mu]=rhs(?),redo,quiet):"

NULL

In the proper referential, the velocity of the particle vanishes and the tridimensional acceleration is directed along the positive x-axis, denote its value by `#msub(mi("w"),mn("0"))`

Hence, proceeding to the relevant substitutions and introducing the corresponding definition into the system, the four-acceleration in the proper referential reads

  "Define(`w__o`[~mu]= subs(v(t)=`w__0`, v(t)=0,rhs(?)),quiet):"

w__o[`~mu`] = TensorArray(w__o[`~mu`])

w__o[`~mu`] = Array(%id = 36893488148076604940)

(2.5)

NULL

The differential equation solving the problem

 

NULL``

Everything is now set up for us to establish the differential equation that will solve our problem. It is at this juncture that we make use of the invariant condition stated in the introduction.

The relativistic invariant condition of uniform acceleration must lie in the constancy of a 4-scalar coinciding with `w__μ`*w^mu  in the proper reference frame.

We simply write the stated invariance of the four scalar (d*u^mu*(1/(d*s)))^2 thus:

w[mu]^2 = w__o[mu]^2

w[mu]*w[`~mu`] = w__o[mu]*w__o[`~mu`]

(3.1)

TensorArray(w[mu]*w[`~mu`] = w__o[mu]*w__o[`~mu`])

(diff(v(t), t))^2*c^2/(v(t)^2-c^2)^3 = -w__0^2/c^4

(3.2)

NULL

This gives us a first order differential equation for the velocity.

 

Solving the differential equation for the velocity and computation of the distance travelled

 

NULL

Assuming the proper reference frame is starting from rest, with its origin at that instant coinciding with the origin of the fixed reference frame, and travelling along the positive x-axis, we get successively,

NULL

dsolve({(diff(v(t), t))^2*c^2/(v(t)^2-c^2)^3 = -w__0^2/c^4, v(0) = 0})

v(t) = t*c*w__0/(t^2*w__0^2+c^2)^(1/2), v(t) = -t*c*w__0/(t^2*w__0^2+c^2)^(1/2)

(4.1)

NULL

As just explained, the motion being along the positive x-axis, we take the first expression.

[v(t) = t*c*w__0/(t^2*w__0^2+c^2)^(1/2), v(t) = -t*c*w__0/(t^2*w__0^2+c^2)^(1/2)][1]

v(t) = t*c*w__0/(t^2*w__0^2+c^2)^(1/2)

(4.2)

This can be rewritten thus

v(t) = w__0*t/sqrt(1+w__0^2*t^2/c^2)

v(t) = w__0*t/(1+w__0^2*t^2/c^2)^(1/2)

(4.3)

It is interesting to note that the ultimate speed reached is the speed of light, as it should be.

`assuming`([limit(v(t) = w__0*t/(1+w__0^2*t^2/c^2)^(1/2), t = infinity)], [w__0 > 0, c > 0])

limit(v(t), t = infinity) = c

(4.4)

NULL

The space travelled is simply

x(t) = Int(rhs(v(t) = w__0*t/(1+w__0^2*t^2/c^2)^(1/2)), t = 0 .. t)

x(t) = Int(w__0*t/(1+w__0^2*t^2/c^2)^(1/2), t = 0 .. t)

(4.5)

`assuming`([value(x(t) = Int(w__0*t/(1+w__0^2*t^2/c^2)^(1/2), t = 0 .. t))], [c > 0])

x(t) = c*((t^2*w__0^2+c^2)^(1/2)-c)/w__0

(4.6)

expand(x(t) = c*((t^2*w__0^2+c^2)^(1/2)-c)/w__0)

x(t) = c*(t^2*w__0^2+c^2)^(1/2)/w__0-c^2/w__0

(4.7)

This can be rewritten in the form

x(t) = c^2*(sqrt(1+w__0^2*t^2/c^2)-1)/w__0

x(t) = c^2*((1+w__0^2*t^2/c^2)^(1/2)-1)/w__0

(4.8)

NULL

The classical limit corresponds to an infinite velocity of light; this entails an instantaneous propagation of the interactions, as is conjectured in Newtonian mechanics.
The asymptotic development gives,

lhs(x(t) = c^2*((1+w__0^2*t^2/c^2)^(1/2)-1)/w__0) = asympt(rhs(x(t) = c^2*((1+w__0^2*t^2/c^2)^(1/2)-1)/w__0), c, 4)

x(t) = (1/2)*w__0*t^2+O(1/c^2)

(4.9)

As for the velocity, we get

lhs(v(t) = t*c*w__0/(t^2*w__0^2+c^2)^(1/2)) = asympt(rhs(v(t) = t*c*w__0/(t^2*w__0^2+c^2)^(1/2)), c, 2)

v(t) = t*w__0+O(1/c^2)

(4.10)

Thus, the classical laws are recovered.

NULL

Proper time

 

NULL

This quantity is given by "t'= ∫ dt sqrt(1-(v^(2))/(c^(2)))" the integral being  taken between the initial and final improper instants of time

Here the initial instant is the origin and we denote the final instant of time t.

NULL

`#mrow(mi("t"),mo("′"))` = Int(sqrt(1-rhs(v(t) = w__0*t/(1+w__0^2*t^2/c^2)^(1/2))^2/c^2), t = 0 .. t)

`#mrow(mi("t"),mo("′"))` = Int((1-w__0^2*t^2/((1+w__0^2*t^2/c^2)*c^2))^(1/2), t = 0 .. t)

(5.1)

Finally the proper time reads

`assuming`([value(`#mrow(mi("t"),mo("′"))` = Int((1-w__0^2*t^2/((1+w__0^2*t^2/c^2)*c^2))^(1/2), t = 0 .. t))], [w__0 > 0, c > 0, t > 0])

`#mrow(mi("t"),mo("′"))` = arcsinh(t*w__0/c)*c/w__0

(5.2)

When proc (t) options operator, arrow; infinity end proc, the proper time grows much more slowly than t according to the law

`assuming`([lhs(`#mrow(mi("t"),mo("′"))` = arcsinh(t*w__0/c)*c/w__0) = asympt(rhs(`#mrow(mi("t"),mo("′"))` = arcsinh(t*w__0/c)*c/w__0), t, 1)], [w__0 > 0, c > 0])

`#mrow(mi("t"),mo("′"))` = (ln(2*w__0/c)+ln(t))*c/w__0+O(1/t^2)

(5.3)

combine(`#mrow(mi("t"),mo("′"))` = (ln(2*w__0/c)+ln(t))*c/w__0+O(1/t^2), ln, symbolic)

`#mrow(mi("t"),mo("′"))` = ln(2*t*w__0/c)*c/w__0+O(1/t^2)

(5.4)

NULL

Evolution of the four-acceleration of the moving frame as observed from the fixed reference frame

 

NULL

To obtain the four-acceleration as a function of time, simply substitute for the 3-velocity (4.3)  in the 4-acceleration (2.4)

" simplify(subs(v(t) = w__0*t/(1+w__0^2*t^2/c^2)^(1/2),?),symbolic)"

w[`~mu`] = Array(%id = 36893488148142539108)

(6.1)

" w[t->infinity]^(  mu)=map(limit,rhs(?),t=infinity) assuming `w__0`>0,c>0"

`#msubsup(mi("w"),mrow(mi("t"),mo("→"),mo("∞")),mrow(mo("⁢"),mo("⁢"),mi("μ",fontstyle = "normal")))` = Array(%id = 36893488148142506460)

(6.2)

We observe that the non-vanishing components of the four-acceleration of the accelerating reference frame get infinite while those components in the moving reference frame keep their constant values . (2.5)

NULL

Evolution of the three-acceleration as observed from the fixed reference frame

 

NULL

This quantity is obtained simply by differentiating the velocity v(t)given by  with respect to the time t.

 

simplify(diff(v(t) = w__0*t/(1+w__0^2*t^2/c^2)^(1/2), t), size)

diff(v(t), t) = w__0/(1+w__0^2*t^2/c^2)^(3/2)

(7.1)

Here also, it is interesting to note that the three-acceleration tends to zero. This fact was somewhat unexpected.

map(limit, diff(v(t), t) = w__0/(1+w__0^2*t^2/c^2)^(3/2), t = infinity)

limit(diff(v(t), t), t = infinity) = 0

(7.2)

NULL

At the beginning of the motion, the acceleration should be w__0, as Newton's mechanics applies then

NULL

`assuming`([lhs(diff(v(t), t) = w__0/(1+w__0^2*t^2/c^2)^(3/2)) = series(rhs(diff(v(t), t) = w__0/(1+w__0^2*t^2/c^2)^(3/2)), t = 0, 2)], [c > 0])

diff(v(t), t) = series(w__0+O(t^2),t,2)

(7.3)

NULL

Justification of the name hyperbolic motion

 

NULL

Recall the expressions for x and diff(t(x), x)and obtain a parametric description of a curve, with diff(t(x), x)as parameter. This curve will turn out to be a hyperbola.

subs(x(t) = x, x(t) = c^2*((1+w__0^2*t^2/c^2)^(1/2)-1)/w__0)

x = c^2*((1+w__0^2*t^2/c^2)^(1/2)-1)/w__0

(8.1)

`#mrow(mi("t"),mo("′"))` = arcsinh(t*w__0/c)*c/w__0

`#mrow(mi("t"),mo("′"))` = arcsinh(t*w__0/c)*c/w__0

(8.2)

The idea is to express the variables x and t in terms of diff(t(x), x).

 

isolate(`#mrow(mi("t"),mo("′"))` = arcsinh(t*w__0/c)*c/w__0, t)

t = sinh(`#mrow(mi("t"),mo("′"))`*w__0/c)*c/w__0

(8.3)

subs(t = sinh(`#mrow(mi("t"),mo("′"))`*w__0/c)*c/w__0, x = c^2*((1+w__0^2*t^2/c^2)^(1/2)-1)/w__0)

x = c^2*((1+sinh(`#mrow(mi("t"),mo("′"))`*w__0/c)^2)^(1/2)-1)/w__0

(8.4)

`assuming`([simplify(x = c^2*((1+sinh(`#mrow(mi("t"),mo("′"))`*w__0/c)^2)^(1/2)-1)/w__0)], [positive])

x = c^2*(cosh(`#mrow(mi("t"),mo("′"))`*w__0/c)-1)/w__0

(8.5)

We now show that the equations (8.3) and (8.5) are parametric equations of a hyperbola with parameter the proper time diff(t(x), x)

 

Recall the hyperbolic trigonometric identity

cosh(`#mrow(mi("t"),mo("′"))`*w__0/c)^2-sinh(`#mrow(mi("t"),mo("′"))`*w__0/c)^2 = 1

cosh(`#mrow(mi("t"),mo("′"))`*w__0/c)^2-sinh(`#mrow(mi("t"),mo("′"))`*w__0/c)^2 = 1

(8.6)

Then isolating the sinh and the cosh from equations (8.3) and (8.5),

NULL

isolate(t = sinh(`#mrow(mi("t"),mo("′"))`*w__0/c)*c/w__0, sinh(`#mrow(mi("t"),mo("′"))`*w__0/c))

sinh(`#mrow(mi("t"),mo("′"))`*w__0/c) = t*w__0/c

(8.7)

isolate(x = c^2*(cosh(`#mrow(mi("t"),mo("′"))`*w__0/c)-1)/w__0, cosh(`#mrow(mi("t"),mo("′"))`*w__0/c))

cosh(`#mrow(mi("t"),mo("′"))`*w__0/c) = x*w__0/c^2+1

(8.8)

and substituting these in (8.6) , we get the looked-for Cartesian equation

 

subs(sinh(`#mrow(mi("t"),mo("′"))`*w__0/c) = t*w__0/c, cosh(`#mrow(mi("t"),mo("′"))`*w__0/c) = x*w__0/c^2+1, cosh(`#mrow(mi("t"),mo("′"))`*w__0/c)^2-sinh(`#mrow(mi("t"),mo("′"))`*w__0/c)^2 = 1)

(x*w__0/c^2+1)^2-w__0^2*t^2/c^2 = 1

(8.9)

NULL

This is the Cartesian equation of a hyperbola, hence the name hyperbolic motion

NULL

Reference

 

[1] Landau, L.D., and Lifshitz, E.M. The Classical Theory of Fields, Course of Theoretical Physics Volume 2, fourth revised English edition. Elsevier, 1975.

NULL

Download Uniformly_accelerated_motion.mw

This is a friendly reminder that the deadline for submissions for this year's Maple Conference Creative Works Exhibit is fast approaching!

If you are looking for inspiration, you can take a look at the writeup of the works that were featured last year in this write up in the most recent issue of Maple Transations.

Also, don't forget that you can also submit art made in Maple Learn for a special exhibit alongside the main gallery.

If you haven’t seen the posts already, the Maple Conference is coming up on the 2nd and 3rd of November! Last year’s art competition was very popular, so this year, not only are we holding the Maple Art and Creative Works Exhibit again, but we’ve decided to extend the art competition to include a Maple Learn Art Showcase!

You may be wondering what math art can be created in Maple Learn, and what the requirements are for the conference. Let’s address the first question first.

The best way to learn what kind of math art can be made is by taking a look at our Maple Learn Art document collection! This collection is in the Maple Learn document gallery, and includes art created by users with different levels of math and Maple Learn knowledge.

Many examples of art are shown in the collection, but take a look at this art piece, which shows a fun character made with functions!

                                          

We not only have static art, but animations as well. Take a look at this document, which shows an animated flower and bee, all created with math and Maple Learn.

 

Now for the conference requirements. The submission requirement date is October 14th 2022, and there’s only one criterion for submission:

  • Art must be created in Maple Learn, and submissions must include the Maple Learn document.

 

Feel free to include any extra information about yourself and your artwork directly in the document. You can share your submission by using the share icon in the top right of the Maple Learn UI. This will create a URL, which can be sent to gallery@maplesoft.com. Don’t forget to include your name in the emailed submission! Please contact us if you’re unsure about any of the criteria, or if you have any other questions!

It may seem overwhelming, but remember: submitting something gives you a chance to share your art with the world and not submitting removes that chance! If you'd like more information about the Maple Learn Art Showcase or the Maple Art and Creative Works Exhibit, please check out our page on submissions for the art gallery on the Maplesoft website, or check out this example submission. See you all next time!

Paulina Chin of Maplesoft and I are pleased to annouce Maple Transactions Volume 2 Issue 1, the Proceedings of the 2021 Maple Conference.

Articles can be found at mapletransactions.org

Some articles are written directly in Maple and are published via the Maple Cloud.  There is also a Demo Video by Michael Monagan of his new GCD code.  There are articles on Math Education, on Applications of Maple, on software, and on mathematics research.  We draw particular attention to the article by Veselin Jungic, 3M Teaching Fellow at SFU and a Fellow of the Canadian Math Society, on Indigenising mathematics.  We hope that, as members of the Maple Community, you find much of interest.

Best wishes,

Rob Corless, Editor-in-Chief

Maple Transactions

Forest of ethnomathematics and its root.  Colourful natural trees growing in a forest above ground while below ground is a colourful mathematical tree going to a single glowing root


 

New generalized unit vectors in Physics:-Vectors

 

The Physics:-Vectors package, written many years ago to teach Vector Analysis to 1st year undergrad students in Physics courses, introduces several things that are unique in computer algebra software. Briefly, this package has the ability to compute sums, dot and cross products, and differentiation with

• 

abstract vectors, like `#mover(mi("A"),mo("→"))` or `#mover(mi("A"),mo("→"))`(x, y, z), symbols or functions with an arrow on top that indicates to the system that they are vectors, not scalars;

• 

projected vectors of algebraic (non-matrix) type in any of the Cartesian, cylindrical or spherical basis and/or associated systems of coordinates, including for that purpose an implementation of the corresponding unit vectors of the three bases;

• 

abstract or projected differential operators that involve Nabla, Gradient, Divergence, Laplacian and Curl;

• 

inert vectors or vectorial differential operators, including related expansion of operations and simplification; 

• 

path, surface and volume vector integrals.

 

In addition to the above, the display is as in textbooks, the input resembles paper and pencil handwriting, and examples of the use of Physics:-Vectors in Vector Analysis are presented in the Physics,Examples page.

 

Download New_generalized_unit_vectors.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Einstein's principle of relativity

 

The main difference between Newtonian mechanics and the mechanics based on Einstein's principle of relativity is that in the latter the velocity of light, c, is the same in all inertial reference systems. Therefore, when comparing the velocity of an object measured in two reference systems 1 and 2 that are moving relative to each other, the Newtonian rule of addition of velocities, v__2_ = v__1_+v__R_, where v__R_ is the velocity of one system with respect to the other one, is not valid; if it were, the speed v__1_ and v__2_ of light in the systems 1 and 2 would not be the same. This introduces surprising conceptual consequences, and algebraic complications in the formulas relating the values of measurements, in the systems 1 and 2, of time, space and everything else that is related to that.

 

This post is thus about Einstein's principle of relativity and the consequences of the velocity of light being the same in all inertial reference systems. Although the topic is often considered advanced, the concepts, as shocking as they are, are easy to understand, and the algebra is still tractable in simple terms. The presentation, following Landau & Lifshitz [1], Chapter 1, is at a basic level, with no prerequisite expertise required, and illustrates well how to handle the basic algebraic aspects of special relativity using computer algebra.

 

Finally, it seems to me not useful to just present the algebra when the concepts behind Einstein's theory are straightforward and surprising. For that reason, the short sections 1 and 2 are all about these concepts, and the algebra only starts in section 3, with the Lorentz transformations (which was recently the topic of a Mapleprimes post at a more advanced level ). To reproduce the computations shown in this worksheet, please install the Maplesoft Physics Updates v.1314 or any subsequent version.

 

Download Einstens_principle_of_relativity.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Welcome back to another blog post, Maple Learn enthusiasts! Today we’re going to go through a concept and see what documents are available to help you learn the concept. What concept? Blood typing!

You may have gotten your blood tested before, but do you know the science behind blood types? Have you ever thought about it, even? Well, if not, you’re in the right place! Let’s take a look at some of the concepts you need to know before looking deeper into blood typing.

First, what are genotypes and phenotypes? Did you notice those terms had links attached to them? We have Maple Learn documents on this topic, shown below. Take a moment to read them over before we continue, but to summarize: A genotype is the genetic makeup within a trait, whereas a phenotype is the displayed trait. Another important term to recognize is allele – the specific variations of genes that are involved in the genotype.

The next thing to review is Punnett Squares, and the document is also shown below. Review this one too, to learn how to examine genetic combinations! Take a good look at the tables being used, as well, as an example of a creative use of a typically mathematical feature.

Now let’s finally dig into the blood types. Humans have 4 different blood types (excluding the Rhesus factor – but we won’t be talking about that today): A, B, AB, and O. A and B alleles are represented with an “I” with a superscript A or B, respectively. O is represented with “i”. Remember, a full genotype has two alleles, so someone with the blood type O would be represented as “ii” in their genotype. Can you read the Punnett Square below?

To extend your learning, take a look at our blood typing quiz! This quiz allows you to practice making Punnett Squares on paper, in order to figure out the likelihood of a phenotype (the blood type) given the genotype of the parents.

We hope you enjoyed the concept walkthrough! Please let us know if there are any other concepts you’d like to see explained through Maple Learn documents. Until next time!

Notation is one of the most important things to communicate with others in science. It is remarkable how many people use or do not use a computer algebra package just because of its notation. For those reasons, in the context of the Physics package, strong emphasis is put on using textbook notation as much as possible regarding input and output, including, for that purpose, as people here know, significant developments in Maple typesetting.

Still, for historical reasons, when using the Physics package, the labels used to refer to a coordinate system had been a single Capital Letter, as in X, Y, ...It was not possible to use, e.g. X', or x.

That has changed. Starting with the Maplesoft Physics Updates v.1308, any symbol can be used as a coordinate system label. The lines below demo this change.

 

Download new_coordinates_labels.mw

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

Welcome back to another document walkthrough! Today, I thought we’d take a look at a non-math example, like chemistry. The document we’ll be using is “Finding Average Atomic Mass”. Before we get too into it, I’d like to define some terms. Average atomic mass is defined as the weighted average mass of all isotopes of an element. An elemental isotope can be thought of as a “version” of the element – The same element at its core, but having different weight or other properties. This is due to having the same number of protons, but a different number of neutrons.

This document is, of course, about finding that average atomic mass. See the picture below for our problem, which states the element, the isotopes, and their separate masses and relative abundance.

The average atomic mass can then be calculated using sum notation. To calculate, take the weighted mean of the isotopes’ atomic masses, as shown in the overview section of the Average Atomic Mass document.

Once you’ve tried solving the problem yourself, take a look at the answer in group four, or one of the practice problems in group five. We have three examples on this topic (Average Atomic Mass Example 1, Average Atomic Mass Example 2, and Average Atomic Mass Example 3), so take a look at them all!

I hope you enjoyed learning just a bit of chemistry today, and let us know in the comments if there are any documents you’d specifically like to see explained, or any topics you’d like us to talk about!

 

Welcome back to another post on the Maple Learn Calculus collection! Previously on this series we looked at the Limit subcollection, and today we are going to look at the Derivative subcollection in the Maple Learn Document Gallery.

There are many different types of documents in this sub collection, so let’s take a look at one of them. We’ll start with the very first question people ask when learning about derivatives: What is a derivative?

 

This document starts us off with an example of f(x):=x2. The example provides the background information for the rest of the document, and a visualization with a slider.

Then, we define both the Geometric and Algebraic definition of a derivative. This allows us to understand the concept in two different ways, a very useful thing for students as they explore other topics within calculus.  

Finally, the document suggests two more documents for future learning: Derivatives: Notation, for more information on the notation used in derivatives, and the Formal Definition of a Derivative document, for more information on how derivatives are formally defined and derived. Make sure to check them out too!

Now, that’s just the start. We’ve got practice problems, definitions and visualizations of rules, information on points without derivatives, and much more. They’re useful for both new learning and as a refresher, so take a look!

We can’t wait to see you another time for when we dive into Derivative documents. Let us know after the Calculus collection showcase blog posts if there’s another collection you’d like to see showcased!

 

UNIVERSIDAD AUTÓNOMA METROPOLITANA
UNIDAD XOCHIMILCO

15º Foro de Investigación de las Matemáticas Aplicadas a las Ciencias Sociales "Reflexiones sobre Educación y Matemáticas”,

"Learning of mathematical functions using applications with Maple, for students of Social Sciences"

The students of the first cycles have a low level of learning in the subject of functions, and the arrival of the pandemic worsened the understanding of this content. Increasing the use of ICT in great magnitude improving learning.
To determine the relationship between learning and mathematical functions using applications with Maple, for students of Social Sciences. The experimental method was used using the scientific software Maple applied to students of Social Sciences.

In Spanish.

 

Lenin Araujo Casillo

Ambassador of Maple

 

 

Following the previous post on The Electromagnetic Field of Moving Charges, this is another non-trivial exercise, the derivation of 4-dimensional relativistic Lorentz transformations,  a problem of a 3rd-year undergraduate course on Special Relativity whose solution requires "tensor & matrix" manipulation techniques. At the end, there is a link to the Maple document, so that the computation below can be reproduced, and a link to a corresponding PDF file with all the sections open.

Deriving 4D relativistic Lorentz transformations

Freddy Baudine(1), Edgardo S. Cheb-Terrab(2)

(1) Retired, passionate about Mathematics and Physics

(2) Physics, Differential Equations and Mathematical Functions, Maplesoft

 

Lorentz transformations are a six-parameter family of linear transformations Lambda that relate the values of the coordinates x, y, z, t of an event in one inertial reference system to the coordinates diff(x, x), diff(y(x), x), diff(z(x), x), diff(t(x), x) of the same event in another inertial system that moves at a constant velocity relative to the former. An explicit form of Lambda can be derived from physics principles, or in a purely algebraic mathematical manner. A derivation from physics principles is done in an upcoming post about relativistic dynamics, while in this post we derive the form of Lambda mathematically, as rotations in a (pseudo) Euclidean 4 dimensional space. Most of the presentation below follows the one found in Jackson's book on Classical Electrodynamics [1].

 

The computations below in Maple 2022 make use of the Maplesoft Physics Updates v.1283 or newer.

Formulation of the problem and ansatz Lambda = exp(`𝕃`)

 

 

The problem is to find a group of linear transformations,

  "x^(' mu)=(Lambda^( mu))[nu]  x^(nu)" 

that represent rotations in a 4D (pseudo) Euclidean spacetime, and so they leave invariant the norm of the 4D position vector x^mu; that is,

"x^(' mu) (x')[mu]=x^( mu) (x^())[mu]"

For the purpose of deriving the form of `#msubsup(mi("Λ",fontstyle = "normal"),mi("ν",fontstyle = "normal"),mrow(mo("⁢"),mi("μ",fontstyle = "normal")))`, a relevant property for it can be inferred by rewriting the invariance of the norm in terms of `#msubsup(mi("Λ",fontstyle = "normal"),mi("ν",fontstyle = "normal"),mrow(mo("⁢"),mi("μ",fontstyle = "normal")))`. In steps, from the above,

"g[alpha,beta] x^(' alpha) (x^(' beta))[]=g[mu,nu] x^( mu) (x^( nu))[]"
 

g[alpha, beta]*`#msubsup(mi("Λ",fontstyle = "normal"),mi("μ",fontstyle = "normal"),mrow(mo("⁢"),mi("α",fontstyle = "normal")))`*x^mu*`#msubsup(mi("Λ",fontstyle = "normal"),mi("ν",fontstyle = "normal"),mrow(mo("⁢"),mi("β",fontstyle = "normal")))`*x^nu = g[mu, nu]*x^mu*`#msup(mi("x"),mrow(mo("⁢"),mi("ν",fontstyle = "normal")))`
 

g[alpha, beta]*`#msubsup(mi("Λ",fontstyle = "normal"),mi("μ",fontstyle = "normal"),mrow(mo("⁢"),mi("α",fontstyle = "normal")))`*x^mu*`#msubsup(mi("Λ",fontstyle = "normal"),mi("ν",fontstyle = "normal"),mrow(mo("⁢"),mi("β",fontstyle = "normal")))`*x^nu = g[mu, nu]*x^mu*`#msup(mi("x"),mrow(mo("⁢"),mi("ν",fontstyle = "normal")))`

from where,

g[alpha, beta]*`#msubsup(mi("Λ",fontstyle = "normal"),mi("μ",fontstyle = "normal"),mrow(mo("⁢"),mi("α",fontstyle = "normal")))`*`#msubsup(mi("Λ",fontstyle = "normal"),mi("ν",fontstyle = "normal"),mrow(mo("⁢"),mi("β",fontstyle = "normal")))` = g[mu, nu]``

or in matrix (4 x 4) form, `#mrow(msubsup(mi("Λ",fontstyle = "normal"),mi("μ",fontstyle = "normal"),mrow(mo("⁢"),mi("α",fontstyle = "normal"))),mo("⁢"),mo("≡"),mo("⁢"),mo("⁢"),mi("Λ",fontstyle = "normal"))`, `≡`(g[alpha, beta], g)

Lambda^T*g*Lambda = g

where Lambda^T is the transpose of Lambda. Taking the determinant of both sides of this equation, and recalling that det(Lambda^T) = det(Lambda), we get

 

det(Lambda) = `&+-`(1)

 

The determination of Lambda is analogous to the determination of the matrix R (3D tensor R[i, j]) representing rotations in the 3D space, where the same line of reasoning leads to det(R) = `&+-`(1). To exclude reflection transformations, that have det(Lambda) = -1 and cannot be obtained through any sequence of rotations, because they do not preserve the relative orientation of the axes, the sign that represents our problem is +. To explicitly construct the transformation matrix Lambda, Jackson proposes the ansatz

  Lambda = exp(`𝕃`)   

Summarizing: the determination of `#msubsup(mi("Λ",fontstyle = "normal"),mi("ν",fontstyle = "normal"),mrow(mo("⁢"),mi("μ",fontstyle = "normal")))` consists of determining `𝕃`[nu]^mu entering Lambda = exp(`𝕃`) such that det(Lambda) = 1followed by computing the exponential of the matrix `𝕃`.

Determination of `𝕃`[nu]^mu

 

In order to compare results with Jackson's book, we use the same signature he uses, "(+---)", and lowercase Latin letters to represent space tensor indices, while spacetime indices are represented using Greek letters, which is already Physics' default.

 

restart; with(Physics)

Setup(signature = "+---", spaceindices = lowercaselatin)

[signature = `+ - - -`, spaceindices = lowercaselatin]

(1)

Start by defining the tensor `𝕃`[nu]^mu whose components are to be determined. For practical purposes, define a macro LM = `𝕃` to represent the tensor and use L to represent its components

macro(LM = `𝕃`, %LM = `%𝕃`); Define(Lambda, LM, quiet)

LM[`~mu`, nu] = Matrix(4, symbol = L)

`𝕃`[`~mu`, nu] = Matrix(%id = 36893488153289603060)

(2)

"Define(?)"

{Lambda, `𝕃`[`~mu`, nu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[a, b], Physics:-LeviCivita[alpha, beta, mu, nu]}

(3)

Next, from Lambda^T*g*Lambda = g (see above in Formulation of the problem) one can derive the form of `𝕃`. To work algebraically with `𝕃`, Lambda, g representing matrices, set these symbols as noncommutative

Setup(noncommutativeprefix = {LM, Lambda, g})

[noncommutativeprefix = {`𝕃`, Lambda, g}]

(4)

From

Lambda^T*g*Lambda = g

Physics:-`*`(Physics:-`^`(Lambda, T), g, Lambda) = g

(5)

it follows that

(1/g*(Physics[`*`](Physics[`^`](Lambda, T), g, Lambda) = g))/Lambda

Physics:-`*`(Physics:-`^`(g, -1), Physics:-`^`(Lambda, T), g) = Physics:-`^`(Lambda, -1)

(6)

eval(Physics[`*`](Physics[`^`](g, -1), Physics[`^`](Lambda, T), g) = Physics[`^`](Lambda, -1), Lambda = exp(LM))

Physics:-`*`(Physics:-`^`(g, -1), Physics:-`^`(exp(`𝕃`), T), g) = Physics:-`^`(exp(`𝕃`), -1)

(7)

Expanding the exponential using exp(`𝕃`) = Sum(`𝕃`^k/factorial(k), k = 0 .. infinity), and taking into account that the matrix product `𝕃`^k/g*g can be rewritten as(`𝕃`/g*g)^k, the left-hand side of (7) can be written as exp(`𝕃`^T/g*g)

exp(LM^T/g*g) = rhs(Physics[`*`](Physics[`^`](g, -1), Physics[`^`](exp(`𝕃`), T), g) = Physics[`^`](exp(`𝕃`), -1))

exp(Physics:-`*`(Physics:-`^`(g, -1), Physics:-`^`(`𝕃`, T), g)) = Physics:-`^`(exp(`𝕃`), -1)

(8)

Multiplying by exp(`𝕃`)

(exp(Physics[`*`](Physics[`^`](g, -1), Physics[`^`](`𝕃`, T), g)) = Physics[`^`](exp(`𝕃`), -1))*exp(LM)

Physics:-`*`(exp(Physics:-`*`(Physics:-`^`(g, -1), Physics:-`^`(`𝕃`, T), g)), exp(`𝕃`)) = 1

(9)

Recalling that  "g^(-1)=g[]^(mu,alpha)", g = g[beta, nu] and that for any matrix `𝕃`, "(`𝕃`^T)[alpha]^(   beta)= `𝕃`(( )^(beta))[alpha]",  

"g^(-1) `𝕃`^T g= 'g_[~mu,~alpha]*LM[~beta, alpha] g_[beta, nu] '"

Physics:-`*`(Physics:-`^`(g, -1), Physics:-`^`(`𝕃`, T), g) = Physics:-`*`(Physics:-g_[`~mu`, `~alpha`], `𝕃`[`~beta`, alpha], Physics:-g_[beta, nu])

(10)

subs([Physics[`*`](Physics[`^`](g, -1), Physics[`^`](`𝕃`, T), g) = Physics[`*`](Physics[g_][`~mu`, `~alpha`], `𝕃`[`~beta`, alpha], Physics[g_][beta, nu]), LM = LM[`~mu`, nu]], Physics[`*`](exp(Physics[`*`](Physics[`^`](g, -1), Physics[`^`](`𝕃`, T), g)), exp(`𝕃`)) = 1)

Physics:-`*`(exp(Physics:-g_[`~alpha`, `~mu`]*Physics:-g_[beta, nu]*`𝕃`[`~beta`, alpha]), exp(`𝕃`[`~mu`, nu])) = 1

(11)

To allow for the combination of the exponentials, now that everything is in tensor notation, remove the noncommutative character of `𝕃```

Setup(clear, noncommutativeprefix)

[noncommutativeprefix = none]

(12)

combine(Physics[`*`](exp(Physics[g_][`~alpha`, `~mu`]*Physics[g_][beta, nu]*`𝕃`[`~beta`, alpha]), exp(`𝕃`[`~mu`, nu])) = 1)

exp(`𝕃`[`~beta`, alpha]*Physics:-g_[beta, nu]*Physics:-g_[`~alpha`, `~mu`]+`𝕃`[`~mu`, nu]) = 1

(13)

Since every tensor component of this expression is real, taking the logarithm at both sides and simplifying tensor indices

`assuming`([map(ln, exp(`𝕃`[`~beta`, alpha]*Physics[g_][beta, nu]*Physics[g_][`~alpha`, `~mu`]+`𝕃`[`~mu`, nu]) = 1)], [real])

`𝕃`[`~beta`, alpha]*Physics:-g_[beta, nu]*Physics:-g_[`~alpha`, `~mu`]+`𝕃`[`~mu`, nu] = 0

(14)

Simplify(`𝕃`[`~beta`, alpha]*Physics[g_][beta, nu]*Physics[g_][`~alpha`, `~mu`]+`𝕃`[`~mu`, nu] = 0)

`𝕃`[nu, `~mu`]+`𝕃`[`~mu`, nu] = 0

(15)

So the components of `𝕃`[`~mu`, nu]

LM[`~μ`, nu, matrix]

`𝕃`[`~μ`, nu] = Matrix(%id = 36893488151939882148)

(16)

satisfy (15). Using TensorArray  the components of that tensorial equation are

TensorArray(`𝕃`[nu, `~mu`]+`𝕃`[`~mu`, nu] = 0, output = setofequations)

{2*L[1, 1] = 0, 2*L[2, 2] = 0, 2*L[3, 3] = 0, 2*L[4, 4] = 0, -L[1, 2]+L[2, 1] = 0, L[1, 2]-L[2, 1] = 0, -L[1, 3]+L[3, 1] = 0, L[1, 3]-L[3, 1] = 0, -L[1, 4]+L[4, 1] = 0, L[1, 4]-L[4, 1] = 0, L[3, 2]+L[2, 3] = 0, L[4, 2]+L[2, 4] = 0, L[4, 3]+L[3, 4] = 0}

(17)

Simplifying taking these equations into account results in the form of `𝕃`[`~mu`, nu] we were looking for

"simplify(?,{2*L[1,1] = 0, 2*L[2,2] = 0, 2*L[3,3] = 0, 2*L[4,4] = 0, -L[1,2]+L[2,1] = 0, L[1,2]-L[2,1] = 0, -L[1,3]+L[3,1] = 0, L[1,3]-L[3,1] = 0, -L[1,4]+L[4,1] = 0, L[1,4]-L[4,1] = 0, L[3,2]+L[2,3] = 0, L[4,2]+L[2,4] = 0, L[4,3]+L[3,4] = 0})"

`𝕃`[`~μ`, nu] = Matrix(%id = 36893488153606736460)

(18)

This is equation (11.90) in Jackson's book [1]. By eye we see there are only six independent parameters in `𝕃`[`~mu`, nu], or via

"indets(rhs(?), name)"

{L[1, 2], L[1, 3], L[1, 4], L[2, 3], L[2, 4], L[3, 4]}

(19)

nops({L[1, 2], L[1, 3], L[1, 4], L[2, 3], L[2, 4], L[3, 4]})

6

(20)

This number is expected: a rotation in 3D space can always be represented as the composition of three rotations, and so, characterized by 3 parameters: the rotation angles measured on each of the space planes x, y, y, z, z, x. Likewise, a rotation in 4D space is characterized by 6 parameters: rotations on each of the three space planes, parameters L[2, 3], L[2, 4] and L[3, 4],  and rotations on the spacetime planest, x, t, y, t, z, parameters L[1, j]. Define now `𝕃`[`~mu`, nu] using (18) for further computing with it in the next section

"Define(?)"

{Lambda, `𝕃`[`~mu`, nu], Physics:-Dgamma[mu], Physics:-Psigma[mu], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[a, b], Physics:-LeviCivita[alpha, beta, mu, nu]}

(21)

Determination of Lambda[`~mu`, nu]

 

From the components of `𝕃`[`~mu`, nu] in (18), the components of Lambda[`~mu`, nu] = exp(`𝕃`[`~mu`, nu]) can be computed directly using the LinearAlgebra:-MatrixExponential command. Then, following Jackson's book, in what follows we also derive a general formula for `𝕃`[`~mu`, nu]in terms of beta = v/c and gamma = 1/sqrt(-beta^2+1) shown in [1] as equation (11.98), finally showing the form of Lambda[`~mu`, nu] as a function of the relative velocity of the two inertial systems of references.

 

An explicit form of Lambda[`~mu`, nu] in the case of a rotation on thet, x plane can be computed by taking equal to zero all the parameters in (19) but for L[1, 2] and substituting in "?≡`𝕃`[nu]^(mu)"  

`~`[`=`](`minus`({L[1, 2], L[1, 3], L[1, 4], L[2, 3], L[2, 4], L[3, 4]}, {L[1, 2]}), 0)

{L[1, 3] = 0, L[1, 4] = 0, L[2, 3] = 0, L[2, 4] = 0, L[3, 4] = 0}

(22)

"subs({L[1,3] = 0, L[1,4] = 0, L[2,3] = 0, L[2,4] = 0, L[3,4] = 0},?)"

`𝕃`[`~μ`, nu] = Matrix(%id = 36893488153606695500)

(23)

Computing the matrix exponential,

"Lambda[~mu,nu]=LinearAlgebra:-MatrixExponential(rhs(?))"

Lambda[`~μ`, nu] = Matrix(%id = 36893488151918824492)

(24)

"convert(?,trigh)"

Lambda[`~μ`, nu] = Matrix(%id = 36893488151918852684)

(25)

This is formula (4.2) in Landau & Lifshitz book [2]. An explicit form of Lambda[`~mu`, nu] in the case of a rotation on thex, y plane can be computed by taking equal to zero all the parameters in (19) but for L[2, 3]

`~`[`=`](`minus`({L[1, 2], L[1, 3], L[1, 4], L[2, 3], L[2, 4], L[3, 4]}, {L[2, 3]}), 0)

{L[1, 2] = 0, L[1, 3] = 0, L[1, 4] = 0, L[2, 4] = 0, L[3, 4] = 0}

(26)

"subs({L[1,2] = 0, L[1,3] = 0, L[1,4] = 0, L[2,4] = 0, L[3,4] = 0},?)"

`𝕃`[`~μ`, nu] = Matrix(%id = 36893488151918868828)

(27)

"Lambda[~mu, nu]=LinearAlgebra:-MatrixExponential(rhs(?))"

Lambda[`~μ`, nu] = Matrix(%id = 36893488153289306948)

(28)

NULL

Rewriting `%𝕃`[`~mu`, nu] = K[`~i`]*Zeta[i]+S[`~i`]*omega[i]

 

Following Jackson's notation, for readability, redefine the 6 parameters entering `𝕃`[`~mu`, nu] as

'{LM[1, 2] = `ζ__1`, LM[1, 3] = `ζ__2`, LM[1, 4] = `ζ__3`, LM[2, 3] = `ω__3`, LM[2, 4] = -`ω__2`, LM[3, 4] = `ω__1`}'

{`𝕃`[1, 2] = zeta__1, `𝕃`[1, 3] = zeta__2, `𝕃`[1, 4] = zeta__3, `𝕃`[2, 3] = omega__3, `𝕃`[2, 4] = -omega__2, `𝕃`[3, 4] = omega__1}

(29)

(Note in the above the surrounding backquotes '...' to prevent a premature evaluation of the left-hand sides; that is necessary when using the Library:-RedefineTensorComponent command.) With this redefinition, `𝕃`[`~mu`, nu] becomes

Library:-RedefineTensorComponent({`𝕃`[1, 2] = zeta__1, `𝕃`[1, 3] = zeta__2, `𝕃`[1, 4] = zeta__3, `𝕃`[2, 3] = omega__3, `𝕃`[2, 4] = -omega__2, `𝕃`[3, 4] = omega__1})

LM[`~μ`, nu, matrix]

`𝕃`[`~μ`, nu] = Matrix(%id = 36893488151939901668)

(30)

where each parameter is related to a rotation angle on one plane. Any Lorentz transformation (rotation in 4D pseudo-Euclidean space) can be represented as the composition of these six rotations, and to each rotation, corresponds the matrix that results from taking equal to zero all of the six parameters but one.

 

The set of six parameters can be split into two sets of three parameters each, one representing rotations on the t, x__j planes, parameters `ζ__j`, and the other representing rotations on the x__i, x__j planes, parameters `ω__j`. With that, following [1], (30) can be rewritten in terms of four 3D tensors, two of them with the parameters as components, the other two with matrix as components, as follows:

Zeta[i] = [`ζ__1`, `ζ__2`, `ζ__3`], omega[i] = [`ω__1`, `ω__2`, `ω__3`], K[i] = [K__1, K__2, K__3], S[i] = [S__1, S__2, S__3]

Zeta[i] = [zeta__1, zeta__2, zeta__3], omega[i] = [omega__1, omega__2, omega__3], K[i] = [K__1, K__2, K__3], S[i] = [S__1, S__2, S__3]

(31)

Define(Zeta[i] = [zeta__1, zeta__2, zeta__3], omega[i] = [omega__1, omega__2, omega__3], K[i] = [K__1, K__2, K__3], S[i] = [S__1, S__2, S__3])

{Lambda, `𝕃`[mu, nu], Physics:-Dgamma[mu], K[i], Physics:-Psigma[mu], S[i], Zeta[i], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[a, b], omega[i], Physics:-LeviCivita[alpha, beta, mu, nu]}

(32)

The 3D tensors K[i] and S[i] satisfy the commutation relations

Setup(noncommutativeprefix = {K, S})

[noncommutativeprefix = {K, S}]

(33)

Commutator(S[i], S[j]) = LeviCivita[i, j, k]*S[k]

Physics:-Commutator(S[i], S[j]) = Physics:-LeviCivita[i, j, k]*S[`~k`]

(34)

Commutator(S[i], K[j]) = LeviCivita[i, j, k]*K[k]

Physics:-Commutator(S[i], K[j]) = Physics:-LeviCivita[i, j, k]*K[`~k`]

(35)

Commutator(K[i], K[j]) = -LeviCivita[i, j, k]*S[k]

Physics:-Commutator(K[i], K[j]) = -Physics:-LeviCivita[i, j, k]*S[`~k`]

(36)

The matrix components of the 3D tensor K__i, related to rotations on the t, x__j planes, are

K__1 := matrix([[0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]])

array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (0), ( 4, 2 ) = (0), ( 1, 2 ) = (1), ( 3, 2 ) = (0), ( 1, 3 ) = (0), ( 4, 3 ) = (0), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (1), ( 3, 3 ) = (0), ( 2, 4 ) = (0), ( 1, 4 ) = (0), ( 2, 2 ) = (0), ( 2, 3 ) = (0), ( 4, 1 ) = (0), ( 3, 4 ) = (0)  ] )

(37)

K__2 := matrix([[0, 0, 1, 0], [0, 0, 0, 0], [1, 0, 0, 0], [0, 0, 0, 0]])

array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (1), ( 4, 2 ) = (0), ( 1, 2 ) = (0), ( 3, 2 ) = (0), ( 1, 3 ) = (1), ( 4, 3 ) = (0), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (0), ( 3, 3 ) = (0), ( 2, 4 ) = (0), ( 1, 4 ) = (0), ( 2, 2 ) = (0), ( 2, 3 ) = (0), ( 4, 1 ) = (0), ( 3, 4 ) = (0)  ] )

(38)

K__3 := matrix([[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 0]])

array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (0), ( 4, 2 ) = (0), ( 1, 2 ) = (0), ( 3, 2 ) = (0), ( 1, 3 ) = (0), ( 4, 3 ) = (0), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (0), ( 3, 3 ) = (0), ( 2, 4 ) = (0), ( 1, 4 ) = (1), ( 2, 2 ) = (0), ( 2, 3 ) = (0), ( 4, 1 ) = (1), ( 3, 4 ) = (0)  ] )

(39)

The matrix components of the 3D tensor S__i, related to rotations on the x__i, x__j 3D space planes, are

S__1 := matrix([[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, -1], [0, 0, 1, 0]])

array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (0), ( 4, 2 ) = (0), ( 1, 2 ) = (0), ( 3, 2 ) = (0), ( 1, 3 ) = (0), ( 4, 3 ) = (1), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (0), ( 3, 3 ) = (0), ( 2, 4 ) = (0), ( 1, 4 ) = (0), ( 2, 2 ) = (0), ( 2, 3 ) = (0), ( 4, 1 ) = (0), ( 3, 4 ) = (-1)  ] )

(40)

S__2 := matrix([[0, 0, 0, 0], [0, 0, 0, 1], [0, 0, 0, 0], [0, -1, 0, 0]])

array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (0), ( 4, 2 ) = (-1), ( 1, 2 ) = (0), ( 3, 2 ) = (0), ( 1, 3 ) = (0), ( 4, 3 ) = (0), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (0), ( 3, 3 ) = (0), ( 2, 4 ) = (1), ( 1, 4 ) = (0), ( 2, 2 ) = (0), ( 2, 3 ) = (0), ( 4, 1 ) = (0), ( 3, 4 ) = (0)  ] )

(41)

S__3 := matrix([[0, 0, 0, 0], [0, 0, -1, 0], [0, 1, 0, 0], [0, 0, 0, 0]])

array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (0), ( 4, 2 ) = (0), ( 1, 2 ) = (0), ( 3, 2 ) = (1), ( 1, 3 ) = (0), ( 4, 3 ) = (0), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (0), ( 3, 3 ) = (0), ( 2, 4 ) = (0), ( 1, 4 ) = (0), ( 2, 2 ) = (0), ( 2, 3 ) = (-1), ( 4, 1 ) = (0), ( 3, 4 ) = (0)  ] )

(42)

NULL

Verifying the commutation relations between S[i] and K[j]

   

The `𝕃`[`~mu`, nu] tensor is now expressed in terms of these objects as

%LM[`~μ`, nu] = omega[i].S[i]+Zeta[i].K[i]

`%𝕃`[`~μ`, nu] = K[`~i`]*Zeta[i]+S[`~i`]*omega[i]

(50)

where the right-hand side, without free indices, represents the matrix form of `%𝕃`[`~mu`, nu]. This notation makes explicit the fact that any Lorentz transformation can always be written as the composition of six rotations

SumOverRepeatedIndices(`%𝕃`[`~μ`, nu] = K[`~i`]*Zeta[i]+S[`~i`]*omega[i])

`%𝕃`[`~μ`, nu] = zeta__1*K[`~1`]+zeta__2*K[`~2`]+zeta__3*K[`~3`]+omega__1*S[`~1`]+omega__2*S[`~2`]+omega__3*S[`~3`]

(51)

Library:-RewriteInMatrixForm(`%𝕃`[`~μ`, nu] = zeta__1*K[`~1`]+zeta__2*K[`~2`]+zeta__3*K[`~3`]+omega__1*S[`~1`]+omega__2*S[`~2`]+omega__3*S[`~3`])

`%𝕃`[`~μ`, nu] = (array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (0), ( 4, 2 ) = (0), ( 1, 2 ) = (zeta__1), ( 3, 2 ) = (0), ( 1, 3 ) = (0), ( 4, 3 ) = (0), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (zeta__1), ( 3, 3 ) = (0), ( 2, 4 ) = (0), ( 1, 4 ) = (0), ( 2, 2 ) = (0), ( 2, 3 ) = (0), ( 4, 1 ) = (0), ( 3, 4 ) = (0)  ] ))+(array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (zeta__2), ( 4, 2 ) = (0), ( 1, 2 ) = (0), ( 3, 2 ) = (0), ( 1, 3 ) = (zeta__2), ( 4, 3 ) = (0), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (0), ( 3, 3 ) = (0), ( 2, 4 ) = (0), ( 1, 4 ) = (0), ( 2, 2 ) = (0), ( 2, 3 ) = (0), ( 4, 1 ) = (0), ( 3, 4 ) = (0)  ] ))+(array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (0), ( 4, 2 ) = (0), ( 1, 2 ) = (0), ( 3, 2 ) = (0), ( 1, 3 ) = (0), ( 4, 3 ) = (0), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (0), ( 3, 3 ) = (0), ( 2, 4 ) = (0), ( 1, 4 ) = (zeta__3), ( 2, 2 ) = (0), ( 2, 3 ) = (0), ( 4, 1 ) = (zeta__3), ( 3, 4 ) = (0)  ] ))+(array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (0), ( 4, 2 ) = (0), ( 1, 2 ) = (0), ( 3, 2 ) = (0), ( 1, 3 ) = (0), ( 4, 3 ) = (omega__1), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (0), ( 3, 3 ) = (0), ( 2, 4 ) = (0), ( 1, 4 ) = (0), ( 2, 2 ) = (0), ( 2, 3 ) = (0), ( 4, 1 ) = (0), ( 3, 4 ) = (-omega__1)  ] ))+(array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (0), ( 4, 2 ) = (-omega__2), ( 1, 2 ) = (0), ( 3, 2 ) = (0), ( 1, 3 ) = (0), ( 4, 3 ) = (0), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (0), ( 3, 3 ) = (0), ( 2, 4 ) = (omega__2), ( 1, 4 ) = (0), ( 2, 2 ) = (0), ( 2, 3 ) = (0), ( 4, 1 ) = (0), ( 3, 4 ) = (0)  ] ))+(array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (0), ( 4, 2 ) = (0), ( 1, 2 ) = (0), ( 3, 2 ) = (omega__3), ( 1, 3 ) = (0), ( 4, 3 ) = (0), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (0), ( 3, 3 ) = (0), ( 2, 4 ) = (0), ( 1, 4 ) = (0), ( 2, 2 ) = (0), ( 2, 3 ) = (-omega__3), ( 4, 1 ) = (0), ( 3, 4 ) = (0)  ] ))

(52)

Library:-PerformMatrixOperations(`%𝕃`[`~μ`, nu] = zeta__1*K[`~1`]+zeta__2*K[`~2`]+zeta__3*K[`~3`]+omega__1*S[`~1`]+omega__2*S[`~2`]+omega__3*S[`~3`])

`%𝕃`[`~μ`, nu] = (array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (zeta__2), ( 4, 2 ) = (-omega__2), ( 1, 2 ) = (zeta__1), ( 3, 2 ) = (omega__3), ( 1, 3 ) = (zeta__2), ( 4, 3 ) = (omega__1), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (zeta__1), ( 3, 3 ) = (0), ( 2, 4 ) = (omega__2), ( 1, 4 ) = (zeta__3), ( 2, 2 ) = (0), ( 2, 3 ) = (-omega__3), ( 4, 1 ) = (zeta__3), ( 3, 4 ) = (-omega__1)  ] ))

(53)

NULL

which is the same as the starting point (30)NULL

The transformation Lambda[`~mu`, nu] = exp(`%𝕃`[`~mu`, nu]), where  `%𝕃`[`~mu`, nu] = K[`~i`]*Zeta[i], as a function of the relative velocity of two inertial systems

 

 

As seen in the previous subsection, in `𝕃`[`~mu`, nu] = K[`~i`]*Zeta[i]+S[`~i`]*omega[i], the second term, S[`~i`]*omega[i], corresponds to 3D rotations embedded in the general form of 4D Lorentz transformations, and K[`~i`]*Zeta[i] is the term that relates the coordinates of two inertial systems of reference that move with respect to each other at constant velocity v.  In this section, K[`~i`]*Zeta[i] is rewritten in terms of that velocity, arriving at equation (11.98)  of Jackson's book [1]. The key observation is that the 3D vector Zeta[i], can be rewritten in terms of arctanh(beta), where beta = v/c and c is the velocity of light (for the rationale of that relation, see [2], sec 4, discussion before formula (4.3)).

 

Use a macro - say ub - to represent the atomic variable `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))` (this variable can be entered as `#mover(mi("β"),mo("ˆ")`. In general, to create atomic variables, see the section on Atomic Variables of the page 2DMathDetails ).

 

macro(ub = `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`)

ub[j] = [ub[1], ub[2], ub[3]], Zeta[j] = ub[j]*arctanh(beta)

`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[j] = [`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1], `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2], `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]], Zeta[j] = `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[j]*arctanh(beta)

(54)

Define(`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[j] = [`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1], `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2], `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]], Zeta[j] = `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[j]*arctanh(beta))

{Lambda, `𝕃`[mu, nu], Physics:-Dgamma[mu], K[i], Physics:-Psigma[mu], S[i], Zeta[i], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[a, b], omega[i], Physics:-LeviCivita[alpha, beta, mu, nu], `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[j]}

(55)

With these two definitions, and excluding the rotation term S[`~i`]*omega[i] we have

%LM[`~μ`, nu] = Zeta[j]*K[j]

`%𝕃`[`~μ`, nu] = Zeta[j]*K[`~j`]

(56)

SumOverRepeatedIndices(`%𝕃`[`~μ`, nu] = Zeta[j]*K[`~j`])

`%𝕃`[`~μ`, nu] = arctanh(beta)*(K[`~1`]*`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]+K[`~2`]*`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]+K[`~3`]*`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3])

(57)

Library:-PerformMatrixOperations(`%𝕃`[`~μ`, nu] = arctanh(beta)*(K[`~1`]*`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]+K[`~2`]*`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]+K[`~3`]*`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]))

`%𝕃`[`~μ`, nu] = (array( 1 .. 4, 1 .. 4, [( 3, 1 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]*arctanh(beta)), ( 4, 2 ) = (0), ( 1, 2 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]*arctanh(beta)), ( 3, 2 ) = (0), ( 1, 3 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]*arctanh(beta)), ( 4, 3 ) = (0), ( 4, 4 ) = (0), ( 1, 1 ) = (0), ( 2, 1 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]*arctanh(beta)), ( 3, 3 ) = (0), ( 2, 4 ) = (0), ( 1, 4 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]*arctanh(beta)), ( 2, 2 ) = (0), ( 2, 3 ) = (0), ( 4, 1 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]*arctanh(beta)), ( 3, 4 ) = (0)  ] ))

(58)

 

From this expression, the form of "Lambda[nu]^(mu)" can be obtained as in (24) using LinearAlgebra:-MatrixExponential and simplifying the result taking into account that `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[j] is a unit vector

SumOverRepeatedIndices(ub[j]^2) = 1

`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]^2+`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]^2+`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]^2 = 1

(59)

exp(lhs(`%𝕃`[`~μ`, nu] = (array( 1 .. 4, 1 .. 4, [( 3, 3 ) = (0), ( 2, 3 ) = (0), ( 4, 2 ) = (0), ( 1, 1 ) = (0), ( 1, 2 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]*arctanh(beta)), ( 4, 4 ) = (0), ( 4, 1 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]*arctanh(beta)), ( 3, 1 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]*arctanh(beta)), ( 3, 4 ) = (0), ( 4, 3 ) = (0), ( 1, 4 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]*arctanh(beta)), ( 3, 2 ) = (0), ( 1, 3 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]*arctanh(beta)), ( 2, 4 ) = (0), ( 2, 1 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]*arctanh(beta)), ( 2, 2 ) = (0)  ] )))) = simplify(LinearAlgebra:-MatrixExponential(rhs(`%𝕃`[`~μ`, nu] = (array( 1 .. 4, 1 .. 4, [( 3, 3 ) = (0), ( 2, 3 ) = (0), ( 4, 2 ) = (0), ( 1, 1 ) = (0), ( 1, 2 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]*arctanh(beta)), ( 4, 4 ) = (0), ( 4, 1 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]*arctanh(beta)), ( 3, 1 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]*arctanh(beta)), ( 3, 4 ) = (0), ( 4, 3 ) = (0), ( 1, 4 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]*arctanh(beta)), ( 3, 2 ) = (0), ( 1, 3 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]*arctanh(beta)), ( 2, 4 ) = (0), ( 2, 1 ) = (`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]*arctanh(beta)), ( 2, 2 ) = (0)  ] )))), {`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]^2+`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]^2+`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]^2 = 1})

exp(`%𝕃`[`~μ`, nu]) = Matrix(%id = 36893488153234621252)

(60)

It is useful at this point to analyze the dependency on the components of `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[j] of this matrix

"map(u -> indets(u,specindex(ub)), rhs(?))"

Matrix(%id = 36893488151918822812)

(61)

We see that the diagonal element [4, 4] depends on two instead of only one component of  `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[j]. That is due to the simplification with respect to side relations , performed in (60), that constructs an elimination Groebner Basis that cannot reduce at once, using the single equation (59), the dependency of all of the elements [2, 2], [3, 3] and [4, 4] to a single component of  `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[j]. So, to reduce further the dependency of the [4, 4] element, this component of (60) requires one more simplification step, using a different elimination strategy, explicitly requesting the elimination of "{(beta)[1],(beta)[2]}"

"rhs(?)[4,4]"

((`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]^2+`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]^2)*(-beta^2+1)^(1/2)-`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]^2-`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]^2+1)/(-beta^2+1)^(1/2)

(62)

 

simplify(((`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]^2+`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]^2)*(-beta^2+1)^(1/2)-`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]^2-`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]^2+1)/(-beta^2+1)^(1/2), {`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]^2+`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]^2+`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]^2 = 1}, {`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1], `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]})

(-(-beta^2+1)^(1/2)*`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]^2+`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]^2+(-beta^2+1)^(1/2))/(-beta^2+1)^(1/2)

(63)

This result involves only `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3], and with it the form of Lambda[`~mu`, nu] = exp(`%𝕃`[`~mu`, nu]) becomes

"subs(1/(-beta^2+1)^(1/2)*((`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]^2+`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]^2)*(-beta^2+1)^(1/2)-`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1]^2-`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2]^2+1) = (-(-beta^2+1)^(1/2)*`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]^2+`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3]^2+(-beta^2+1)^(1/2))/(-beta^2+1)^(1/2),?)"

exp(`%𝕃`[`~μ`, nu]) = Matrix(%id = 36893488151918876660)

(64)

Replacing now the components of the unit vector `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[j] by the components of the vector `#mover(mi("β",fontstyle = "normal"),mo("→"))` divided by its modulus beta

seq(ub[j] = beta[j]/beta, j = 1 .. 3)

`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1] = beta[1]/beta, `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[2] = beta[2]/beta, `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[3] = beta[3]/beta

(65)

and recalling that

exp(`%𝕃`[`~μ`, nu]) = Lambda[`~μ`, nu]

exp(`%𝕃`[`~μ`, nu]) = Lambda[`~μ`, nu]

(66)

to get equation (11.98) in Jackson's book it suffices to introduce (the customary notation)

1/sqrt(-beta^2+1) = gamma

1/(-beta^2+1)^(1/2) = gamma

(67)

"simplify(subs(`#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[1] = beta[1]/beta, exp(`%𝕃`[`~μ`,nu]) = Lambda[`~μ`,nu], 1/(-beta^2+1)^(1/2) = gamma,(1/(-beta^2+1)^(1/2) = gamma)^(-1),?))"

Lambda[`~μ`, nu] = Matrix(%id = 36893488151911556148)

(68)

 

This is equation (11.98) in Jackson's book.

 

Finally, to get the form of this general Lorentz transformation excluding 3D rotations, directly expressed in terms of the relative velocity v of the two inertial systems of references, introduce

v[i] = [v__x, v__y, v__z], beta[i] = v[i]/c

v[i] = [v__x, v__y, v__z], beta[i] = v[i]/c

(69)

At this point it suffices to Define (69) as tensors

Define(v[i] = [v__x, v__y, v__z], beta[i] = v[i]/c)

{Lambda, `𝕃`[mu, nu], Physics:-Dgamma[mu], K[i], Physics:-Psigma[mu], S[i], Zeta[i], beta[i], Physics:-d_[mu], Physics:-g_[mu, nu], Physics:-gamma_[a, b], omega[i], v[i], Physics:-LeviCivita[alpha, beta, mu, nu], `#mover(mi("β",fontstyle = "normal"),mo("ˆ"))`[j]}

(70)

and remove beta and gamma from the formulation using

(rhs = lhs)(1/(-beta^2+1)^(1/2) = gamma), beta = v/c

gamma = 1/(-beta^2+1)^(1/2), beta = v/c

(71)

"simplify(subs(gamma = 1/(-beta^2+1)^(1/2),simplify(?)),size) "

Lambda[`~μ`, nu] = Matrix(%id = 36893488153289646316)

(72)

NULL

``

NULL

References

 

[1] J.D. Jackson, "Classical Electrodynamics", third edition, 1999.

[2] L.D. Landau, E.M. Lifshitz, "The Classical Theory of Fields", Course of Theoretical Physics V.2, 4th revised English edition, 1975.

NULL

Download Deriving_the_mathematical_form_of_Lorentz_transformations.mw

Deriving_the_mathematical_form_of_Lorentz_transformations.pdf

Edgardo S. Cheb-Terrab
Physics, Differential Equations and Mathematical Functions, Maplesoft

We've just released Maple Flow 2022.1. We've squeezed in a few new features as requested by our users - I'll describe them below.

Before we get to that, I'd like to give everyone an open invitation to grab a Maple Flow trial - I'd love to know what you think. I'm fanatically devoted to making Flow better, but I can only do that if you give me your feedback.

You can specify if you want your results to be globally displayed using engineering, scientific, or fixed notation

Supporting images can be cut and pasted from another source directly into Maple Flow using standard clipboard operations.

You can now insert a time stamp in headers and footers. And you can optionally place a border around the header, footer or body of the page.

New content in the help system makes it easier to get started with advanced features, including techniques for optimization and signal processing.

Go here to learn more...and don't forget to grab a trial.

 

Yes, you read that right! Steps documents are a feature in Maple Learn that we wanted to highlight this week, as they can provide great use in understanding concepts and solving problems. Within them, they can show all steps to solve a problem, including reminders of any formulas used! They can be found at the homepage for steps documents. A list of all can be found below the image, with links.

All steps documents:

All of our documents follow the same format, which I’ll show you using 3 different documents: Derivatives Steps, Factoring Steps, and Matrix Determinant Steps. They will be shown from left to right in that order, so you can see the different steps and how they work.

 

The first thing you’ll see on any steps document is the place to enter the equation. Each equation can be entered in the appropriate box, in different styles to fit your needs and the problem asked.

Then, you click on the show steps button, which is the same for all of the documents:

This is where the magic happens. The steps will appear line by line, in great detail. The actual steps are generated by Maple, and presented in Maple Learn through scripting. Because of this, please don’t click off the group the steps appear in, or they’ll appear in the new group as well!

There are many other steps documents than the ones we have here, and will be adding more as time goes on. Please keep an eye out, and enjoy the updates! We hope this was helpful to you all, and let us know if there are any other steps you’d like to see.

 

Have you ever heard of a matrix kernel or nullspace? If not, or you’d like a refresher on the topic, keep reading! We’re doing a Maple Learn document walkthrough today on Fundamental Subspaces.

The document starts by defining the nullspace/kernel and nullity of a matrix. Nullity is defined as the number of vectors in the basis of the kernel for the given matrix. This makes sense, as nullspace is defined as:

                                    

This may still not make sense to you, and that’s okay! We have an example for a reason, where we try to find a basis for Null(A) and state the dimension of the subspace (nullity).

                                              

I won’t go through the solution here, as trying it yourself is always important. But one hint! If you get really stuck, you can find the Reduced Row Echelon Form (RREF) and the kernel using Maple Learn’s context panel, or check out the rest of our Matrices collection for other helpful documents on this topic.

 

Please let us know what you thought of this walkthrough or if there are any specific documents or topics you’d like to see in the comments below this post. I hope you enjoyed this walkthrough!

4 5 6 7 8 9 10 Last Page 6 of 71