Education

Teaching and learning about math, Maple and MapleSim

In the present work it has been shown how Maple helps in the teaching of Mathematics in the different subjects that it has. Using a Maple worksheet as if it were a class preparation notebook could develop problems such as: Vector Analysis, EDO, EDP, Statistics, Algebra, Geometry, etc., among others; Taking as a method of solution the clickable-mathpopup, the right click (contextual) or at best embedded components. No criteria or prerequisite is needed to use Maple; Rather than being willing to forget the traditional slate and down and replace it with dynamic leaves that maple offers us; To achieve excellent academic profiles both individually and in groups. The proprietary methods are used to develop applications (math-apps) being a professional criterion; That is to say, according to the problematic reality, we are looking for enduring interactive solutions. Here we use the graphical algorithm and the block diagram as a solution proposal but not as something obligatory to implement solutions. We take as a teaching-learning measure the results of our students in the ability to analyze and interpret the results; Since in the times of calculation; Maple helps tremendously; Opening up this way to train students competent in basic sciences and engineering.

 

II_SEMINARIO_UNT_2017.pdf

In Spanish

Lenin Araujo Castillo

Ambassador of Maple - Perú

 

 

In the creation of this animation the technique from here  was used.

 

                    

 

The code of this animation:

with(plots): with(plottools):
SmallHeart:=plot([1/20*sin(t)^3, 1/20*(13*cos(t)/16-5*cos(2*t)/16-2*cos(3*t)/16-cos(4*t)/16), t = 0 .. 2*Pi], color = "Red", thickness=3, filled):
F:=t->[sin(t)^3, 13*cos(t)/16-5*cos(2*t)/16-2*cos(3*t)/16-cos(4*t)/16]:
Gf:=display(translate(SmallHeart, 0,0.37)):
Gl:=display(translate(SmallHeart, 0,-1)):
G:=t->display(translate(SmallHeart, F(t)[])):
A:=display(seq(display(op([Gf,seq(G(-Pi/20*t), t=3..k),seq(G(Pi/20*t), t=3..k)]))$4,k=2..17),display(op([Gf,seq(G(-Pi/20*t), t=3..17),seq(G(Pi/20*t), t=3..17),Gl]))$30, insequence=true, size=[600,600]):
B:=animate(textplot,[[-0.6,0.25, "Happy"[1..round(n)]],color="Orange", font=[times,bolditalic,40], align=right],n=0..5,frames=18, paraminfo=false):
C:=animate(textplot,[[-0.2,0, "Valentine's"[1..round(n)]],color=green, font=[times,bolditalic,40], align=right],n=1..11,frames=35, paraminfo=false):
E:=animate(textplot,[[-0.3,-0.25, "Day!"[1..round(n)]],color="Blue", font=[times,bolditalic,40], align=right],n=1..4,frames=41, paraminfo=false):
T:=display([B, display(op([1,-1,1],B),C), display(op([1,-1,1],B),op([1,-1,1],C),E)], insequence=true):
K:=display(A, T, axes=none):
K;


The last frame of this animation:

display(op([1,-1],K), size=[600,600], axes=none);  # The last frame

                          

 

ValentinelDay.mw
 

Edit. The code was edited - the number of frames has been increased.

Suppose we have some simple animations. Our goal - to build a more complex animation, combining the original animations in different ways.
We show how to do it on the example of the three animations. The technique is general and can be applied to any number of animations.

Here are the three simple animations:

restart;
with(plots):
A:=animate(plot, [sin(x), x=-Pi..a, color=red, thickness=3], a=-Pi..Pi):
B:=animate(plot, [x^2-1, x=-2..a, thickness=3, color=green], a=-2..2): 
C:=animate(plot, [[4*cos(t),4*sin(t), t=0..a], color=blue, thickness=3], a=0..2*Pi):

 

In Example 1 all three animation executed simultaneously:

display([A, B, C], view=[-4..4,-4..4]);

                                

 

In Example 2, the same animation performed sequentially. Note that the previous animation disappears completely when the next one begins to execute:

display([A, B, C], insequence);

                                 

 

Below we show how to save the last frame of every previous animation into subsequent animations:

display([A, display(op([1,-1,1],A),B), display(op([1,-1,1],A),op([1,-1,1],B),C)], insequence);

                                 

 

Using this technique, we can anyhow combine the original animations. For example, in the following example at firstly animations   and  B  are executed simultaneously, afterwards C is executed:

display([display(A, B), display(op([1,-1,1],A),op([1,-1,1],B),C)], insequence);

                                     

 

The last example in 3D I have taken from here:

restart;
with(plots):
A:=animate(plot3d,[[2*cos(phi),2*sin(phi),z], z =0..a, phi=0..2*Pi, style=surface, color=red], a=0..5):
B:=animate(plot3d,[[(2+6/5*(z-5))*cos(phi), (2+6/5*(z-5))*sin(phi),z], z=5..a, phi=0..2*Pi, style=surface, color=blue], a=5..10):
C:=animate(plot3d,[[8*cos(phi),8*sin(phi),z], z =10..a, phi=0..2*Pi, style=surface, color=green], a=10..20):
display([A, display(op([1,-1,1],A),B), display(op([1,-1,1],A),op([1,-1,1],B),C)], insequence, scaling=constrained, axes=normal);

                        


 

AA.mw

I am pleased to announce that we have just released a significant update to Maple T.A. 2016, our online assessment system.

Maple T.A. 2016.1 includes a wide range of features and improvements that have been requested by customers, including new options for questions and assignments, improved content management, and enhanced integration with course management systems. It also includes a substantial number of small enhancements and corrections across all areas of the product, providing improved responsiveness, more efficient load handling, and smoother workflow for instructors and students.

For more information, visit What’s New in Maple T.A.

Jonny Zivku
Product Manager, Online Education Products

HI MaplePrimes.com and other watchers,

Please enjoy the attaced files about combinatorics.
You may already know what '4 choose 3' is.

an_excercise_in_combinatorics.mw

an_excercise_in_combinatorics.pdf

Hopefully this can be useful to the casual mathematical observer.

Regards,

Matt

 

Graphical Programming with MapleSim in Vector Mechanics to Structures 2D

At the present time before constructing or starting to develop a mechanical structures project it is necessary to model it using graphic programming; In this opportunity and used MapleSim as a computational tool belonging to the company Maplesoft. The modern approach to modeling and simulation makes the fabrication of complex designs easy to solve. We will cover some examples taken from the engineering being implemented in Maplesim with insertion of physical objects; To be seen in real time through video output; Then integrates with Maple to analyze the equations and data through the static and dynamic behavior of the fabricated. Solved methods of physical block components include functionality for many domains: rotational and translational mechanics, multi-body dynamics, logic, and structural blocks; With techniques like: Drag-and-Drop Physical Modeling Environment and Create Custom Components Directly From Their Equations, thus the systems that would take hours or days to build from equations; In principle they can be created in a fraction of time using MapleSim, so it can incorporate significantly more complex graphical algorithms. In MapleSim, I use the revolutionary multibody technology that perfectly combines advanced multi-domain modeling tools to provide all the functionality you need in one environment.

FAST_UNT_2017.pdf

Lenin Araujo Castillo

Ambassador Maple - Perú

 

 

Everything is simple, until you go underwater – This is what the University of Waterloo Submarine Racing team, or in short ‘WatSub’ coined as their motto. Never mind learning to scuba dive, and dealing with such things as rust, this newly formed team would have to compete against university teams with a decade or more of experience.

But that did not deter the team, and they started work on Ontario’s first submarine racing project. The team approached Maplesoft to be a sponsor and we are proud to have supported this ingenious venture. The team has used Maplesoft technology in the design and testing of the submarine.

“Maple has been our go-to calculations and analysis tool throughout the development of Amy (2015-2016 season), and we will continue using it throughout the development of Bolt (2016-2017 season),” said Gonzalo Espinoza Graham, President of the WatSub Team. “Its familiar interface and computing environment allowed us to set design benchmark targets from early on the design process and follow through with them on the later stage.”

What started as an engineering project in December 2014, becoming officially the first submarine racing team in Ontario. The team soon grew to over 130 general members and a tight core-team, who were eager to tackle new challenges.  The team resides inside the Sedra Student Design Centre, University of Waterloo’s state of the art facility that houses over 25 student teams, the largest of its kind in North America.  

WatSub made its first appearance on the European International Submarine Races (eISR) back in July 2016, with its 1st submarine ‘Amy’, where a single scuba diver piloted the submarine and propelled it through an unforgiving winding course marked by obstacles and turns 10 meters underwater. The team has since then participated in other competitions and is constantly improving the design and performance of the submarine, learning from each competition they participate in.  Next year Amy will participate in the 14th edition of the eISR international competition. “I think the greatest thing we learned is never to give up,” said Ana Krstanovic, a third-year political science student who manages communications for the team. “We’re more motivated now than ever.”

 

Ojaswi Tagore, Gonzalo Espinoza Graham, and Janna Henzl represented WatSub at the European International Submarine Race in Gosport, UK.

 

Another example of an innovative project that Maplesoft supported in 2016 is Waterloop: The Canadian SpaceX Hyperloop Competition Team, Canada's only SpaceX Hyperloop Pod Competition team. This project, which could change the way we travel in the future, is driven by a group of dedicated University of Waterloo students who have taken on the challenge to design and build a functional prototype Hyperloop pod. They will test it on a one-mile test track in Hawthorne, California in January 2017, pitting it against 22 of the 1200+ teams who originally entered the competition.

The Hyperloop is a conceptual next generation high-speed transit system that will take commuters between cities at speeds over 1,000 km/h. The technology will differ from previous rail transit by having pods ride on a cushion of air in a reduced pressure tube in order to reach greater speeds with a smoother ride, and is powered entirely by renewable energy.

 The Hyperloop Pod Competition was launched by Elon Musk, the billionaire engineer and founder of SpaceX and Tesla Motors.  The competition is separated into 3 rounds. The first one was held in late December, where selected teams sent in their initial designs to be reviewed. From there, 180 teams were chosen to compete at Texas A&M University. Each team set up a booth and a panel of judges critiqued them and chose 31 teams to move onto the final, build and test stage.

Waterloop Goose I

Waterloop Goose X

The GOOSE I is Waterloop’s half-scale, functional prototype vehicle pod, which will be the one in the competition.  The GOOSE X pod is a conceptual full size Hyperloop vehicle inspired by the prototype they are building. The full size pod will have a capacity of 26 passengers per pod.

"Our prototype has been designed to be as simple and economical as possible, while still performing all necessary functions for the full size Hyperloop. If it is successful, it has the potential to revolutionize the transit industry in the same manner the train and airplane has before it," said Montgomery de Luna, architectural design lead for Waterloop. “We would like to thank Maplesoft for their generous support.  Without sponsors like Maplesoft supporting our vision and encouraging innovative student projects, we wouldn’t be able to achieve our goal.”

Revolutionizing the transportation industry isn’t easy and is at times frustrating and time consuming for these teams, but having the best tools and resources will ensure that the teams have a good chance at excelling in competitions and creating innovative models that could change our future.

The Joint Mathematics Meetings are taking place this week (January 4 – 7) in Atlanta, Georgia, U.S.A. This will be the 100th annual winter meeting of the Mathematical Association of America (MAA) and the 123nd annual meeting of the American Mathematical Society (AMS).

Maplesoft will be exhibiting at booth #118 as well as in the networking area. Please stop by our booth or the networking area to chat with me and other members of the Maplesoft team, as well as to pick up some free Maplesoft swag or win some prizes.

There are also several interesting Maple-related talks and events happening this week:

 

Teaching Cryptology to Increase Interest in Mathematics for Students Majoring in Non-Technical Disciplines and High School Students

Wednesday, January 4, 0820, L401 & L402, Lobby Level, Marriott Marquis

Neil Sigmon, Radford University

 

Enigma: A Combinatorial Analysis and Maple Simulator

Wednesday, January 4, 0900, L401 & L402, Lobby Level, Marriott Marquis

Rick Klima, Appalachian State University

 

MYMathApps Calculus - Building on Maplets for Calculus

Thursday, January 5, 0800, Courtland, Conference Level, Hyatt Regency

Philip B. Yasskin, Texas A&M University 
Douglas B. Meade, University of South Carolina 
Andrew Crenwelge, Texas A&M University

 

Maple Software Technology as a Stimulant Tool for Dynamic Interactive Calculus Teaching and Learning

Thursday, January 5, 1000, Courtland, Conference Level, Hyatt Regency

Lina Wu, Borough of Manhattan Community College-The City University of New York 

 

Collaborative Research: Maplets for Calculus

Thursday, January 5, 1400, Marquis Ballroom, Marquis Level, Marriott Marquis

Philip Yasskin, Texas A&M University 
Douglas Meade, U of South Carolina

 

Digital Graphic Calculus Art Design in Maple Software

Thursday, January 5, 1420, International 7, International Level, Marriott Marquis

Lina Wu, Borough of Manhattan Community College-The City University of New York 

 

Maplesoft will also be hosting a catered reception and brief presentation on Teaching STEM Online: Challenges and Solutions, Thursday January 5th, from 6:00pm – 7:30pm, at the Hyatt Regency, Hanover AB, on the exhibitor level. Please RSVP at www.maplesoft.com/jmm or at Maplesoft booth #118.

 

If you are attending the Joint Math meetings this week and plan on presenting anything on Maple, please feel free to let me know and I'll update this list accordingly.


See you in Atlanta!

Daniel

Maple Product Manager

   

 

The code for the animation:

L:=[[-0.12,2],[-0.14,0],[0.14,0],[0.12,2]]:
L1:=[[0.05,2],[4,1],[2,4],[3.5,3.5],[1,7],[2,6.5],[0,10]]:
A:=plot(L, color=brown, thickness=10):
B:=plot([op(L1),op(map(t->[-t[1],t[2]],ListTools:-Reverse(L1)))], color="Green", thickness=10):
C:=plottools:-polygon([op(L1),op(map(t->[-t[1],t[2]],ListTools:-Reverse(L1)))], color=green):
Tree:=plots:-display([A, B, C], scaling=constrained, axes=none):
T:=[[-3.2,-2, Happy, color=blue, font=[times,bold,30]], [0,-2,New, color=blue, font=[times,bold,30]], [2.5,-2,Year, color=blue, font=[times,bold,30]], [-5,-3.5, "&", color=yellow, font=[times,bold,30]],[-2.5,-3.5, Merry, color=red, font=[times,bold,30]], [2.3,-3.5, Christmas!, color=red, font=[times,bold,30]], [0,-5, "2017", color=cyan, font=[times,bold,36]]$5]:
F:=k->plottools:-homothety(Tree, k, [0,5]):
A:=plots:-animate(plots:-display, ['F'(k)], k=0..1, frames=60, paraminfo=false):
B:=plots:-animate(plots:-textplot,[T[1..round(i)]], i=0..nops(T), frames=60, paraminfo=false):
plots:-display(A, B, size=[500,550], scaling=constrained);


Christmas_Tree.mw

 Edit.

 

Ian Thompson has written a new book, Understanding Maple.

I've been browsing through the book and am quite pleased with what I've read so far. As a small format paperback of just over 200 pages it packs in a considerable amount of useful information aimed at the new Maple user. It says, "At the time of writing the current version is Maple 2016."

The general scope and approach of the book is explained in its introduction, which can currently be previewed from the book's page on amazon.com. (Click on the image of the book's cover, to "Look inside", and then select "First Pages" in the "Book sections" tab in the left-panel.)

While not intended as a substitute for the Maple manuals (which, together, are naturally larger and more comprehensive) the book describes some of the big landscape of Maple, which I expect to help the new user. But it also explains how Maple is working at a lower level. Here are two phrases that stuck out: "This book takes a command driven, or programmatic, approach to Maple, with the focus on the language rather than the interface", followed closely by, "...the simple building blocks that make up the Maple language can be assembled to solve complex problems in an efficient way."

 

 

 

Last week Michael Pisapia, Maplesoft European VP, attended the opening reception of Mathematics: The Winton Gallery at the Science Museum in London. Ahead of being open to the public on 8th December, contributors and donors were invited to take a look behind the scenes of the new gallery, which explores how mathematicians, their tools and ideas have helped to shape the modern world over the last four hundred years.

The gallery is a spectacular space, designed by the world-renowned Zaha Hadid Architects, housing over a hundred artefacts of mathematical origin or significance. It is divided up into disciplines ranging from navigation to risk assessment, and gambling to architecture. Inspired by the Handley Page aircraft, the largest object on display, and suspended as the centrepiece, the gallery is laid out using principles of mathematics and physics. It follows the lines of airflow around it in a stunning display of imagined aerodynamics, brought to life using light and sculpture. You can learn more about its design in this video.

Guests at the reception enjoyed a specially commissioned piece of music from the Royal College of Music titled ‘Gugnunc’, named after the aircraft and inspired by the rhythms of Morse code and mathematical and mechanical processes, and performed at the centre of the gallery.

Of course any exhibit celebrating all things maths is of great interest to us here at Maplesoft, but this one especially so, since Mathematics: The Winton Gallery showcases the earliest available version of Maple.

A copy of Maple V, from 1997, sits in ‘The Power of Computers’ section of the Winton Gallery, in an exhibit which tells the story of the significant role played by mathematical software in improving the quality of mathematics education and research. Other objects in the section include a Calculating Machine from the Scientific Service circa 1939, a PDP-8 minicomputer from the 1960s, and part of Charles Babbage’s mid-19th century analytical engine, intended as a high-powered mathematical calculator.

As many of you will remember, Maple V was a major milestone in the history of Maple, providing unparalleled interactivity, powerful symbolics and creative visualization in mathematical computation and modeling. For a walk down memory lane, check out Maple V: The Future of Mathematics (ca. 1994) on YouTube.

Seeing this copy of Maple finally in place in the exhibit marks the end of a long journey – and not just in the miles it travelled to arrive at the museum from its home in Canada. When we were first approached by the Science Museum for a donation of Maple, we launched a hunt to find not just the right copy of Maple with its box and manuals, but also artefacts that showcased the origin and history of Maple. It was a journey down memory lane for the inventors of Maple as well as the first few employees as they dug out old correspondences, photos, posters and other memorabilia that could be showcased. Today they can be proud of their contribution to this display at the Science Museum. 

Although the case of historic software packages is visually less impressive than many of the other items in the gallery, it certainly attracted plenty of attention as guests made their way in for the first time. 

For fans of Maple V - and there are many - it’s reassuring that the Science Museum are now entrusted with preserving not only the iconic packaging, but with telling the story of Maple’s history and marking its place in the evolution of mathematics and technology.

To learn more about Mathematics: The Winton Gallery, its highlights and architecture, visit http://www.sciencemuseum.org.uk/mathematics

To see the timeline of Maple’s evolution over the years, visit:  http://www.maplesoft.com/25anniversary/

Let us consider 

Student[Precalculus]:-LimitTutor(sqrt(x), x = 2);

One expects a nice illustration of the result sqrt(2). But instead of that one reads "f(x) approaches 1.41 as x approaches 2". This is simply clueless and forms a wrong understanding of limits. It should also be noticed that all the entries (left, 2-sided, and right) produce the same animation. The same issue with other limits I tried, e.g.

Student[Precalculus]:-LimitTutor(sqrt(x), x = 1);

. I think this command should be completely rewritten or excluded from Maple. 

Hi MaplePrimes,

This YouTube video has a nice puzzle. 

It is titled "Can you solve the locker riddle". 
My first blush was to consider modular arithmatic
https://www.youtube.com/watch?v=c18GjbnZXMw

Here is a maple page -
divisors_excercise.mw

divisors_excercise.pdf

Have a very fine rest of the day.

Regards,
Matt

 

From October 19-21, the third installment of the Maple T.A. and Möbius User Summit took place. Making the move back to Europe this year, the three-day conference was held at the beautiful Vienna University of Technology in the heart of Vienna, Austria. The scope of this year’s event expanded to include Maplesoft’s newest product, Möbius, an online courseware environment, which is designed to help academic institutions move their STEM courses online.

This year’s Summit brought together participants from 20 countries, including Australia, the Czech Republic, Poland, China, Norway, India, Egypt, Japan, the Netherlands, and many others. Needless to say, there is great interest in learning more about how Maple T.A. and Möbius can play a role in shaping the educational landscape.

Video recordings of each presentation will be made public soon, so keep an eye out for them!

Conference attendees take in the sights on the veranda at TU Wien

Getting Down to Business

Presentations were divided into 5 overarching themes as they relate to Maple T.A. and Möbius: Shaping Curriculum; Content Creation; Experiences Using Möbius; Integrating with your Technology; and The Future of Online Education. Presentations were given by representatives from schools across Europe, including DTU (Denmark), TH Köln (Germany), Imperial College of London and University of Birmingham (UK), Vienna UT (Austria), KTH Royal Institute of Technology (Sweden), Université de Lausanne (Switzerland), and others.

Many talks showcased the impressive versatility of Maple T.A. as a online assessment system, and Möbius to have practical applications in all STEM subjects, from Nuclear Engineering to Operations Management and many subjects in between.

Perhaps the discussion that gave Maplesoft the most feedback was led by Steve Furino from the University of Waterloo, who divided attendees up into groups to formulate a wish list of what they’d like to see in a courseware authoring environment. The list had over 40 items.


Linda Simonsen, Country Manager in the Nordic, records a group’s wish list

Notable Quotables

Many thought-provoking statements and questions were posed, but the following few stood out above the rest:

  • “Wouldn’t it be wonderful if you could take the best course from the best instructor anywhere in the world?”
  • “With Maple T.A., we can divert resources away from grading and over to tutoring.”
  • “Möbius rescued us!”

Get the party started!

While each day was full of invigorating conference discussions, evenings provided ample opportunity to ditch the suit jacket and tie, and enjoy the lively Austrian atmosphere. The first evening at the Zwölf Apostelkeller was the perfect venue to break the ice while satisfying those taste buds longing for some traditional Viennese cuisine. Once Schnitzel, Käsespätzle (a delicious German version of Mac and Cheese), Strudel, Kaiserschmarren (shredded pancake), and a glass or two of wine hit the table, people soon forgot about the pouring rain outside.

The evening reception took place 3-4 levels under ground

Michael Pisapia, VP of Europe, serves digestifs to guests

It would have been hard to top the social in the Apostelkeller, but the next evening sure tried.

Day 2 finished with an impressive formal dining experience at the historic Gerstner Beletage in the Palace Todesco, built in 1864 and situated directly across from the Vienna State Opera House. The 500-room palace was home to Eduard Freiherr von Todesco, a well-known Viennese banker.

View from the palace of the Vienna State Opera House

Jonny Zivku, Maple T.A. Product Manager, gives opening remarks at the Gerstner Beletage im Palais Todesco

Jonathan Watkins from the University of Birmingham and Michael Pisapia - both dressed to impress

The skies finally cleared enough to take some photos, but only after most people had gone home. Thankfully Aron Pasieka, Möbius Project Manager, was still around to get some great shots of the city. Enjoy!


Before the skies cleared vs. after the skies cleared

From beginning to end, the entire Summit was very well received by everyone who attended.

We would be remiss if we did not thank our incredible hosts at the Vienna University of Technology. Stefanie Winkler, Professor Andreas Körner, and Professor Felix Breitenecker were beyond helpful in bringing many of the finer details together, as well as helping many people overcome the language barrier.

We can’t wait to do it all again in London, England in 2017, and hope to see just as many new faces as familiar ones.

 

Photo credits: A. Pasieka, A. French, H. Zunic, J. Cooper

 

Update: The conference presentation recordings are now available here on our website.

This MaplePrimes guest blog post is from Ian VanderBurgh, the Director of the Center for Education in Mathematics and Computing (CEMC) and a Lecturer in the Faculty of Mathematics at the University of Waterloo. He has been overseeing a project to develop online, interactive mathematics curriculum for high school students, and has been integral in the development of Möbius, Maplesoft's online courseware environment.

Start with one part interest in online education, add one part increased functionality for developing online content, and mix with one part increased focus in the media and elsewhere on mathematics education.  What does this produce?  The perfect time to create high-quality online resources to support learning and teaching in mathematics.

The Centre for Education in Mathematics and Computing (CEMC) at the University of Waterloo aims to increase interest, enjoyment, confidence, and ability in mathematics and computer science among learners and educators in Canada and internationally.  For more than fifty years, we have been working with teachers to support the important work that they do in the classroom.  When online courses rose to prominence several years ago, we felt that this gave us the perfect opportunity to create materials to better support the curriculum being taught across Canada and around the world.

The content for what we now call “Phase One” was planned: Advanced Functions (Pre-Calculus) as well as Calculus & Vectors.  These materials would support the education of students in their final year of secondary school, and also provide materials to reinforce concepts for students in STEM programs at the post-secondary level.

After deciding on the content, we needed a platform.  We knew that we needed one with exceptional mathematical capabilities.  Thus, we have been working hand-in-hand with Maplesoft ever since.

With content and platform established, the style began to take shape.  It is based around what one of my colleagues calls “the five Es”: Exposition (onscreen text with synchronized audio), Experimentation (worksheets where users can manipulate mathematical objects), Evaluation (re-generating quiz questions), Exercises (with answers and solutions), and Enrichment (application and extension problems and solutions).  Have a look at the materials and watch a video about the courseware.  After less than two years of “public life”, Phase One has received more than 2 million page views and usage is accelerating.

But why stop there?  Through the development of Phase One, all of the stakeholders realized that, while what we created was great, we needed better and more efficient development tools.  Thus, Möbius was born.  (In the meantime, the CEMC separately launched Phase Two of this ambitious initiative: resources in computer science to support the teaching and learning of programming concepts.)

Now, using the full capabilities of Möbius, we are developing Phase Three, a parallel set of resources to Phase One that will support mathematics at the Grade 7/8 level.  Why Grade 7/8?  We believe that these are very important years in education, that it is vital to future success in STEM disciplines that students flourish in these years, and that we should do whatever we can to support this.

What comes next?  Time will tell.  But, the CEMC will be there supporting mathematics and STEM education.  STEM disciplines will drive almost everything in the twenty-first century, and we have an obligation to do whatever we can to give young people every possible chance for success.

First 20 21 22 23 24 25 26 Last Page 22 of 55