Personal Stories

Stories about how you have used Maple, MapleSim and Math in your life or work.

Bruce Jenkins is President of Ora Research, an engineering research and advisory service. Maplesoft commissioned him to examine how systems-driven engineering practices are being integrated into the early stages of product development, the results of which are available in a free whitepaper entitled System-Level Physical Modeling and Simulation. In the coming weeks, Mr. Jenkins will discuss the results of his research in a series of blog posts.

This is the first entry in the series.

Discussions of how to bring simulation to bear starting in the early stages of product development have become commonplace today. Driving these discussions, I believe, is growing recognition that engineering design in general, and conceptual and preliminary engineering in particular, face unprecedented pressures to move beyond the intuition-based, guess-and-correct methods that have long dominated product development practices in discrete manufacturing. To continue meeting their enterprises’ strategic business imperatives, engineering organizations must move more deeply into applying all the capabilities for systematic, rational, rapid design development, exploration and optimization available from today’s simulation software technologies.

Unfortunately, discussions of how to simulate early still fixate all too often on 3D CAE methods such as finite element analysis and computational fluid dynamics. This reveals a widespread dearth of awareness and understanding—compounded by some fear, intimidation and avoidance—of system-level physical modeling and simulation software. This technology empowers engineers and engineering teams to begin studying, exploring and optimizing designs in the beginning stages of projects—when product geometry is seldom available for 3D CAE, but when informed engineering decision-making can have its strongest impact and leverage on product development outcomes. Then, properly applied, systems modeling tools can help engineering teams maintain visibility and control at the subsystems, systems and whole-product levels as the design evolves through development, integration, optimization and validation.

As part of my ongoing research and reporting intended to help remedy the low awareness and substantial under-utilization of system-level physical modeling software in too many manufacturing industries today, earlier this year I produced a white paper, “System-Level Physical Modeling and Simulation: Strategies for Accelerating the Move to Simulation-Led, Systems-Driven Engineering in Off-Highway Equipment and Mining Machinery.” The project that resulted in this white paper originated during a technology briefing I received in late 2015 from Maplesoft. The company had noticed my commentary in industry and trade publications expressing the views set out above, and approached me to explore what they saw as shared perspectives.

From these discussions, I proposed that Maplesoft commission me to further investigate these issues through primary research among expert practitioners and engineering management, with emphasis on the off-highway equipment and mining machinery industries. In this research, focused not on software-brand-specific factors but instead on industry-wide issues, I interviewed users of a broad range of systems modeling software products including Dassault Systèmes’ Dymola, Maplesoft’s MapleSim, The MathWorks’ Simulink, Siemens PLM’s LMS Imagine.Lab Amesim, and the Modelica tools and libraries from various providers. Interviewees were drawn from manufacturers of off-highway equipment and mining machinery as well as some makers of materials handling machinery.

At the outset, I worked with Maplesoft to define the project methodology. My firm, Ora Research, then executed the interviews, analyzed the findings and developed the white paper independently of input from Maplesoft. That said, I believe the findings of this project strongly support and validate Maplesoft’s vision and strategy for what it calls model-driven innovation. You can download the white paper here.

Bruce Jenkins, Ora Research
oraresearch.com

A more honest and specific version of lemma 3.

CONGRUENT_FUNCTIONS_OF_THE_FRACTIONAL_PART_OVER_Q_LEMMA_4.mw

Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/CONGRUENT_FUNCTIONS_OF_THE_FRACTIONAL_PART_OVER_Q_LEMMA_4.mw .

Download CONGRUENT_FUNCTIONS_OF_THE_FRACTIONAL_PART_OVER_Q_LEMMA_4.mw

hello i was just looking back on some stuff i did a few months back and although im aware there is a function for generating the prime subset up to a given number already featured in a package in mape im just curious to know how this one measures up in terms of computational efficiency etc.

 

anyway, this is code, if anyone has the time to give it a try and let me know what they think ie faster more logical way about it any feed back is appreciated cheers.

 

restart;
interface(showassumed = 0, rtablesize = infinity);
with(plots); with(numtheory); with(Statistics); with(LinearAlgebra); with(RandomTools); with(codegen, makeproc); with(combinat); with(Maplets[Elements]);
unprotect(real, rational, integer, complex);
alias(P[In] = CurveFitting[PolynomialInterpolation]); alias(L[In] = CurveFitting[LeastSquares]); alias(R[In] = CurveFitting[RationalInterpolation]); alias(S[In] = CurveFitting[Spline]); alias(B[In] = CurveFitting[BSplineCurve]); alias(L[In] = CurveFitting[ThieleInterpolation], rho = frac); alias(`𝒩` = Count); alias(`𝔻` = numtheory:-divisors); alias(sigma = numtheory:-sigma); alias(`ℱ` = ListTools['Flatten']); alias(`𝕊` = seq);
delta := proc (x, y) options operator, arrow; piecewise(x = y, 1, x <> y, 0) end proc;
`&Mopf;` := proc (X, Y) options operator, arrow; map(X, Y) end proc;
`&Cscr;`[S, L] := proc (X) options operator, arrow; convert(X, 'list') end proc;
`&Cscr;`[L, S] := proc (X) options operator, arrow; convert(X, 'set') end proc;
`&Popf;` := proc (N) options operator, arrow; `minus`({`&Sopf;`(k*delta(`&Nscr;`(`&Fscr;`(`&Cscr;`[S, L](`&Mopf;`(`&Cscr;`[S, L], `&Mopf;`(`&Dopf;`, `&Dopf;`(k)))))), 3), k = 1 .. N)}, {0}) end proc;
N -> `minus`({(k delta(&Nscr;(&Fscr;(&Cscr;[S, L]((&Cscr;[S, L])

  &Mopf; (&Dopf; &Mopf; (&Dopf;(k)))))), 3)) &Sopf; (k = 1 .. N)},

  {0})
n[P] := proc (N) options operator, arrow; `&Nscr;`(`&Cscr;`[S, L](`&Popf;`(N)))-1 end proc;



Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/prime_subset_up_to_N.mw .

Download prime_subset_up_to_N.mw

 

Points on the coordinate plane

(Guidance manual for the 6th class)

Changing the initial coordinates and going through the entire program first, we get a new picture-task

 

    Point_on_co-plane.mws

 

And Another     Coordinate_plane.mws

 

 

 

Points on the coordinate plane

(Guidance manual for the 6th class)

Changing the initial coordinates and going through the entire program first, we get a new picture-task

 

    Point_on_co-plane.mws

 

And Another     Coordinate_plane.mws

 

 

 

Coordinate axis

6th class (in Russia)

Guidance manual for use at lessons (at school)

Coordinate_line_lesson.mws

(It is possible bad English)

 

Coordinate axis

6th class (in Russia)

Guidance manual for use at lessons (at school)

Coordinate_line_lesson.mws

(It is possible bad English)

     I want to understand what the forum rules I break? And why do me constantly interferes Markiyan Hirnyk? A recent example: he removed my comments in the subject  http://www.mapleprimes.com/posts/203796-Equidistant-Surface-

At the beginning of the theme I have provided the text of the program, and then gave a description of the algorithm in words. In removed by Hirnyk examples I have quoted only the formula, because the text of the program has not changed.

I have long known Hirnyk for Russian-speaking forums and personal correspondence. Communication with him for a long time I stopped, because it is extremely unpleasant man, and it seems very angry and envious. In addition, the level of competence is very low and is away from the content of my subject. I am convinced of this. I will not say he is constantly trying to harm me on Russian forums.

     ( Хочу понять, какие правила форума я нарушаю? И почему мне постоянно мешает  Markiyan Hirnyk? Из последних примеров: он удалил мои комментарии в теме http://www.mapleprimes.com/posts/203796-Equidistant-Surface-
В начале темы я предоставил текст программы и потом дал описание алгоритма на словах. В удалённых Hirnyk примерах я привел только формулу, потому что текст программы не изменился.  
Я давно знаю  Hirnyk  по русскоязычным форумам и по личной переписке. Общение я с ним давно прекратил, потому что человек он крайне неприятный, и, похоже, очень злой и завистливый. К тому же уровень его  компетенции весьма невысок и находится в стороне от содержания моих тем. Я в этом убеждён. Не буду говорить, как он пытается постоянно вредить мне на русских форумах. ) 

Russian children work with Maple - view

http://geodromchik.blogspot.ru

//sites.google.com/site/geodromchic

Russian children work with Maple - view

http://geodromchik.blogspot.ru

//sites.google.com/site/geodromchic

POSSIBILITIES OF USING OF COMPUTER IN MATHEMATICS

AND OTHER APPLICATIONS IN INCLUSIVE EDUCATION

 

Alsu Gibadullina, math teacher

Secondary and high school # 57, Kazan, Russia

 

In recent years Russia actively promoted and implemented the so-called inclusive education (IE). According to the materials of Alliance of human rights organizations “Save the children”: "Inclusive or included education is the term used to describe the process of teaching children with special needs in General (mass) schools. In the base of inclusive education is the ideology that ensures equal treatment for everybody, but creates special conditions for children with special educational needs. Experience shows that any of the rigid educational system some part of the children is eliminated because the system is not ready to meet the individual needs of these children in education. This ratio is 15 % of the total number of children in schools and so retired children become separated and excluded from the overall system. You need to understand that children do not fail but the system excludes children. Inclusive approaches can support such children in learning and achieving success. Inclusive education seeks to develop a methodology that recognizes that all children have different learning needs tries to develop a more flexible approach to teaching. If teaching and learning will become more effective as a result of the changes that introduces Inclusive Education, all children will win (not only children with special needs)."

There are many examples of schools that have developed their strategy implementation of IE, published many theoretical and practical benefits of inclusion today. All of them have common, immaterial character. There is no description of specific techniques implementing the principles of IO in the teaching of certain disciplines, particularly mathematics. In this paper we propose a methodology that can be successfully used as in “mathematical education for everyone", also for the development of scientific creativity of children at all age levels of the school in any discipline.

According to the author, one of the most effective methodological tools for education is a computer mathematics (SCM, SSM). Despite the fact that the SCM were created for solving problems of higher mathematics, their ability can successfully implement them in the school system. This opinion is confirmed by more than 10–year-old author's experience of using the package Maple in teaching mathematics. At first it was just learning the system and primitive using its. Then author’s interactive demonstrations, e-books, programs of analytical testing were created by the tools packages. The experience of using the system Maple in teaching inevitably led to the necessity to teach children to work with it. At first worked a club who has studied  the principles of the package’s work, which eventually turned into a research laboratory for the use of computer technology. Later on its basis there was created the scientific student society (SSS) “GEODROMhic" which operates to this day. The main idea and the ultimate goal of SSS – individual research activities on their interests with the creation of the author electronic scientific journals through the use of computer mathematics Maple. The field of application of the package was very diverse: from mathematics to psychology and cultural phenomena. SSS’s activity is very high: they are constantly and successfully participate in intellectual high-level activities (up to international). Obviously, not every SSS’s member reaches high end result. However, even basic experience in scientific analysis, modeling, intelligent  using of the computer teaches the critical thinking skills, evokes interest to new knowledge, allows you to experience their practical value, gives rise to the development of creative abilities. As a result, the research activity improves intellectual culture, self-esteem and confidence, resistance to external negative influence. It should be noted, however, that members of the scientific societies are not largely the so-called "gifted", than ordinary teenagers with different level of intellectual development and mathematical training. With all this especially valuable is that the student is dealing with mathematical signs and mathematical models, which contributes to the development of mathematical thinking.

From 2007 to 2012. our school (№. 57 of Kazan) was the experimental platform of the Republican study SKM (Maple) and other application software in the system of school mathematical education under the scientific management of Professor Yu. G. Ignatyev of Kazan state University (KF(P)U).

Practical adaptation of computer mathematics and other useful information technologies to the educational process of secondary schools passed and continues to work in the following areas:

  1. The creation of a demonstration support of different types of the lessons;
  2. The embedding of computing to the structure of practical trainings;
  3. In the form of additional courses - studying of computer applications through which you can conduct a research of the mathematical model and create animated presentation videos, web-pages, auto-run menu;
  4. Students’ working on individual creative projects:
  • construction of computer mathematical models;
  • creating author's programs with elements of scientific researches;
  • students create interactive computer-based tutorials;
  • creation of an electronic library of creative projects;
  1. The participation of students  in the annual competitions and scientific conferences for students;
  2. The accumulation and dissemination of new methodological experience.

Traditionally, the training system has the structure: explanation of a new →  the solution of tasks→ check, self-test and control → planning of the new unit  with using analysis. However, the main task types: 1) elementary, 2) basic, 3) combined, 4) integrated, 5) custom. With the increasing the level of training a number of basic tasks are growing and some integrated tasks become a class of basic. Thus, the library for basic operations is generated. The decision of the educational task occurs on the way of mastering the theoretical knowledge of mathematical modeling: 1) analysis of conditions (and construction drawing), 2) the search for methods of solution, 3) computation, 4) the researching.

To introduce computer mathematics in this training system, you can:

  • At demonstrations. For example, with Maplе facilities you can create a step-by-step interactive and animated images, which are essentially the exact graphic interpretation of mathematical models.
  • If we have centralized collective control.
  • If students have individual self-control.
  • In the analysis of the conditions of the problem, for the construction and visualization of its model, the study of this model.
  • In the computations.
  • In practical training of different forms.
  • In individual projects with elements of research.

In the learning process with the use of computer mathematics in the school a library of themed demonstrations, tasks of different levels and purpose, programs, analytical testing, research projects is generated. With all this especially valuable is that the student is dealing with mathematical signs and mathematical models. Addiction to them processed in the course of working with them it’s unobtrusive, naturally, organically.

Mathematical modelling (MM) is increasingly becoming an important component of scientific research. Today's powerful engineering tools allow to carry out numerous computer experiments, deep and full enough of exploring the object, without significant cost painless. Thus provided the advantages of theoretical approach, and experiment. The integration of information technology and      MM method is effective, safe and economical. This explains its wide distribution and makes unavoidable component of scientific and technical progress.

Modeling is a natural process for people, it is present in any activity. The introduction with nature by man occurs through constant  modeling of situation, comparing with the basic models and past experience by them. Method for modeling, abstraction as a method of understanding the world is therefore  an effective method of learning. Training activities associated with the creative transformation of the subject. The main feature of educational training activities is the systematic solution of the educational problems. The connection of the principles of developmental education, mathematical modeling, neurophysiological mechanisms of the brain and experience with Maple leads to the following conclusions: the method of mathematical modeling is not only scientific research but also the way of development of thinking in general; computer and mathematical environment (Maple), which is a powerful tool for scientific simulation can be considered as the elementary analogue of the brain. These qualities of computer mathematics led to the idea of using it not only as an effective methodological tool but as a means of nurturing the thinking and development of mental functions of the brain. To study this effect the school psychologist conducted a test, which confirm the observations: the dynamics of intellectual options students  who working with Maple compares favorably with peers. In the process of doing computer math, in particular Maple, are involved in complex different mental functions. It is in the inclusion of all mental functions is the essence of integration of learning, its educational character. And this, in turn, contributes to the solution of moral problems.

Long-term work with computer mathematics led to the idea to use it as a tool for psychological testing. One of the projects focuses on the psychology and contains authors Maple–tests to identify the degree of development of different mental functions. Interactive mathematical environment  gives a wide variability and creative testing capabilities. Moreover, Maple–test can be used not only as diagnostic but also as educational, and corrective. This technology was tested in one of psycho neurological dispensaries a few years ago.

Currently, one of the author's students, the so-called "homeworkers", the second year is a young man with a diagnosis, categories F20, who does not speak and does not write independently. It was         impossible to get feedback from him and have basic training until then author have begun to apply computer-based tools, including system Maple. Working with the computer tests and mathematical objects helps to see not only the mental and even the simplest thinking movement, but also emotional movement!

In general, the effectiveness of the implementation in the structure of educational process of secondary school of new organizational forms of the use of computers, based on the application of the symbolic mathematics package Maple, computer modeling and information technology, has many aspects, here are some of them:

  • goals of education and math in particular;
  • additional education;
  • methodical and professional opportunities;
  • theoretical education;
  • modeling;
  • scientific creativity;
  • logical language;
  • spatial thinking, the development of the imagination;
  • programming skills;
  • the specificity of technical translation;
  • differentiation and individualization of educational process;
  • prospective teaching, the continuity of higher and secondary mathematics education;
  • development of creative abilities, research skills;
  • analytical thinking;
  • mathematical thinking;
  • mental diagnosis;
  • mental correction.

       According to the author, the unique experience of the Kazan 57–th school suggests that computer mathematics (Maple) is the most effective also universal tool of new methods of inclusion. In recent decades, there are more children with a specific behavior, with a specific perception, not able to focus, with a poor memory, poor thinking processes. There are children, emotionally and intellectually healthy, or even ahead of their peers in one team together with them. High school should provide all the common core learning standards. It needed a variety of programs and techniques, as well as specialists who use them. Due to its remarkable features, computer mathematics, in particular Maple, can be used or be the basis of the variation of methods of physico-mathematical disciplines of inclusive education.

First 6 7 8 9 10 11 12 Last Page 8 of 25