Maple Learn Questions and Posts

These are Posts and Questions associated with the product, Maple Learn

Today I’m here with a document walkthrough under the subject of graph theory! Do you know what an Eulerian path is? Have you ever tried to find one?

An Eulerian path is a path that uses every edge in the graph exactly once. Vertices can be revisited, just not the edges. There are mathematical ways to find an Eulerian path, but at the level of math I’m at, I just use my eyes!

                                                      

In the document Eulerian Paths Quiz, we focus on trying to find an Eulerian path. This document, created using Maple scripting, uses the click on plot feature, allowing you to click on the edges and check your answer. When an edge is clicked, it turns red, and feedback is given.

If you make a mistake, there are a few options. If the most recent edge chosen is the mistake, you can simply click on it again to undo the selection. However, if the mistake is several edges back, or you need to undo the whole thing, you can click the blue reset button.

                                                                                    

Once you’ve done one, you might want to try another graph. That’s why we have a try another button, to give you another random new graph.

We hope you enjoy this document! If you’re curious about how this document was scripted, you can see our script HERE. Please let us know if there are any specific documents you’d like as a walkthrough in the comments below, and check out our other graph theory documents.

 

Maple Learn is an incredibly powerful tool for math and plotting, but it is made even more powerful when used in combination with Maple! Using scripting tools in Maple, we can make use of hundreds of commands that can solve complex problems for us. In the example of the Lagrange calculator, we are able to use the Maple command LagrangeMultipliers to generate a plot of the two functions and the critical points, even including text feedback about the points.


Something like this seems like it would take hours and a lot of coding knowledge to create, but a simple Maple command generates the entire plot for us! Then, all we had to do was use a button to update the plot. Give it a try yourself in Maple, run the following command with two functions f and g of your choosing:

That’s all there is to it! We now have a complex 3D plot showing the Lagrange problem, something that can be difficult to visualize in multivariate calculus. If we want detailed feedback about the Lagrange problem values, simply change output to detailed from plot:

Check out the entire Maple document (.mw file) to see how the Learn page was generated and to try things out for yourself. This entire document uses the LagrangeMultipliers command, but Maple has hundreds more to experiment with, so the possibilities are virtually limitless!

Share your creations here on MaplePrimes and tag us in your posts.

Maple Learn Document: https://learn.maplesoft.com/doc/lagrange-multipliers-calculator-1biue2ben9

Maple .mw file: https://maple.cloud/app/5998067190071296/LagrangeCalculatorCritical?key=54CE05EC89B34E47984BC61C329A6E759658927BED02458095DA1F576CD93DB9

Maple Learn has a new face! We’ve changed our homepage to the document gallery, which some of you may have already noticed. This is a huge change, and we’re excited for it, as it places content front and center: the goal of Maple Learn. Don’t worry, getting to a blank document is still easy. There is a large orange button on the top right of the document gallery which says “start creating now”. This button will take you to a blank Maple Learn Document.

                                                                        

The most important reason for this change is to help new users get started. Seeing a blank document can sometimes be terrifying! With this new homepage, users can immediately begin looking through premade content, and get inspiration for their own documents.

 

The first document collection a user sees in the document gallery is still the same: Our featured collection. From there, we have the Maple Learn how-to documents, and then it’s into documents sorted by the overarching subject. Two examples of overarching subjects are Functions and Biology. And, if a user is interested in some of the more artistic sides of Maple Learn, we have our art collection available as well. There’s something for everyone in our gallery!

                             

Now that we’ve explained the largest change, let’s talk about some smaller ones too. Tables now can have row and column headings, allowing for a greater range of data to be represented. Along with that, we’ve added a correlation command to the context panel. Some bugs have also been fixed: Special characters now appear properly in the French and German galleries and scrollbars work over 3D plots.

 

We hope you enjoy the changes we’ve made. Please continue to report bugs and telling us about features you’d like to see!

Hi Maple Users

As I hope you have already heard, Maplesoft is having our Maple Conference again this fall. And that means that

Last year we had many great submissions and you can still read about them in detail on the 2021 conference site. Some of the featured works were excellent Maple visualizations, including a special prize for a student contribution by Avek Dongol (center).

But we also featured a number of impressive physical works, including the people's choice winning wood carving by Paul DeMarco (left), and the judges' choice winning cross stitch by Bridjet Lee and Curtis Bright (right).

This year, we are again looking to fill our virtual exhibition with all types of mathematical art, ranging from computer graphics and animations, to needlework, geometrical sculptures, or almost anything you can come up with. Surprise us!

The full announcement can be found at the Maple Conference Art Gallery page. We would like to have all submissions by September 22nd so that we can review and finalize the gallery before the conference begins November 2nd.

I can't wait to see what everyone sends in this year!

It’s been a hot week at the Maplesoft office, but we’re back with another fun example! In school, you probably learned how to calculate volume of simple shapes: Cubes, prisms, things like that. However, something I never understood was complex shapes. I struggled to separate it into smaller shapes, plus I had trouble understanding ratios!

                                                          

Thankfully, Maple Learn has documents on almost anything. I love looking through them when making these posts, just to see what more I can learn. In this case, I found a really interesting example on Changing Dimensions and Effects on Volume, which taught me a lot. Let’s take a look at it, and hopefully it will help you too!

 

The document begins with a statement, saying “For a 3D object, if one or more dimensions (length, width, height) are changed, then the volume of the object is scaled by a factor equal to the product of all scale factors of changed dimensions”. If you’re not a math person, like me, this statement can be quite confusing at first glance. Let’s break it down.

 

The first part of the statement is easy to understand. We know what a 3D object is, and we know what dimensions changing means. We also know what the volume of an object is, as a concept. However, what is all this about scale factors?

 

Looking at the example, it starts to make a lot more sense. The solid has dimensions of 4x10x6. To find the scale factor, we first need to decide on an “original” solid. In this case, a 2x2x2 cube. The number of those cubes is found by dividing each dimension of the full shape by the dimensions of the original shape. This gives us 30. That means the new solid is 30 times larger than the cubes.

 

From there, the document has a fun, interactive example that lets you play around with sliders.

                                                          

When you change a, b, and c you are changing the scale factors. This lets you see the final volume, and how it changes with those factors.

 

We hope this example helped you understand a concept you may have never been directly taught, as I know it helped me! Let us know if you’d like to see any more example walkthroughs.

Happy Friday everyone, and welcome to our third post about how you can use Maple Learn in non-math disciplines! Today, we’re going to talk about the Biology collection in Maple Learn. This was a recent addition to the Maple Learn document gallery.

Of course, there are too many documents in the Biology collection to talk about all of them. We’re going to talk about three documents today, and I’ll link to them as we go. Are you excited? I am!

First, let’s talk about the Introduction to Alleles and Genotype document. The current focus of our Biology collection is genetics. This document is therefore important to start with as it lays the foundation for understanding the rest of the documents. Using a visualization of a sperm cell and an egg cell, this document clearly explains what alleles and genotypes are, and how this presents in humans and other diploid organisms.

`

Next is the Introduction to Punnett Squares. Punnett squares are used to predict genotypes and the probability of those genotypes existing in an organism. They can be pretty fun, once you get the hang of them, and are simple to understand using this document. We use the table feature in Maple Learn to display the Punnett squares, which is quite a handy feature for visualizations.

Finally, although there are other introductory documents (Phenotypes, Dihybrid crosses), let’s take a look at the Blood Typing document! As you may know, there are four main blood types (when you exclude the positive or negative): A, B, AB, and O. However, there are only three alleles, due to codominance and other factors. Come check out how this works, and read the document yourself!

                                                                        

Our Biology collection is still growing, and we’d love to hear your input. Let us know in the comments of this post if there are any other document topics you’d like to see!

Last week, we took a look at the Chemistry documents in Maple Learn. After writing that post, I started thinking more about the types of documents we have in the document gallery. From there, I realized we’d made several updates to the Physics collection, and added a Biology collection, that I hadn’t written about yet! So, this week, we’ll be talking about the Physics collection, and next week, we’ll have a discussion about the Biology collection. Without further ado, let’s take a look!

First, let’s talk Kinematics. This collection has been around for a while now, and if you’ve looked at the Physics documents, you’ve likely seen it. We have documents for Displacement, Velocity, and Acceleration, Equations 1 to 4 for Kinematics, 1D motion, and 2D motion. Let’s take a look at the 2D motion example, shall we?

In this document, we explore projectile motion. You can use sliders to change the initial velocity and the height of a projectile, in order to see how they affect the object’s motion. Then, in group two, you can adjust the number of seconds after an object has been released in order to see how the velocity changes. The resulting graph is shown above this paragraph.

Next, we also have documents on Energy, Simple Harmonic Motion, and Waves (interference and harmonics). These documents were added over the last few months, and we’re excited to share them! Opening the document used as an example for wave harmonics (link provided again here), we’re immediately given a description of the important background knowledge, and then a visualization, shown below. This allows you to see how waves change based on the harmonics and over time.

Finally, we have documents on Electricity and Magnetism, Dynamics, and some miscellaneous documents, like our document on the inverse square law applied to Gravity. Within these document collections, we have quizzes, information, and many more visualizations!

The Physics collection is quite an interesting collection, we hope you enjoy! As with the Chemistry documents, please let us know if there’s any topics you’d like to see in our document gallery.

Hello Maple Learn enthusiasts, of all disciplines! Do any of you study Chemistry, or simply enjoy it? Well, you’re in luck. We’re released a new collection of documents in the document gallery, all focused on Chemistry. Remember, Maple Learn isn’t just for math fields. We also have documents on Biology, Physics, Finance, and much more!

                                                                  

First, we have our new gas laws documents. These documents focus on Boyle’s law, Charles’ law, Gay-Lussac’s law, and Avogadro’s law. We also have documents on the Combined Gas law and the Ideal Gas law. Many of these laws also have example questions to go along with them, for your studying needs.

We also have documents on molar and atomic mass. One example for atomic mass teaches you to use the proper formulas (No spoilers for the answer here, folks!) using the material Hafnium and its five isotopes. Don’t know the approximate masses of the isotopes without looking them up? No worries, I don’t either! It’s in the question text, as a hint.

Finally, let’s take a look at the dilution documents. We have documents discussing the calculations, and some examples. In this document, there are both an example walking you through the steps, and a practice question for you to try yourself. Of course, the solution is included at the bottom of the document, but we encourage you to try the problem yourself first.

We hope you’re just as excited as us for the Chemistry collection! Like our other collections, the Chemistry collection is constantly being added to. If you have any ideas for future documents, or even just topics you’d like to see, let us know in the comments below.

Have you ever wanted to create practice problems and quizzes that use buttons and other features to support a student making their way to an answer, such as the following?

Let’s take a look at how you can use Maple 2022 to create documents like these that can be deployed in Maple Learn. I know I’ve always wanted to learn, so let’s learn together. All examples have a document that you can use to follow along, found here, in Maple Cloud.  

The most important command you’ll want to take a look at is ShareCanvas. This command generates a Maple Learn document. Make sure to remember that command, instead of ShowCanvas, so that the end result gives you a link to a document instead of showing the results in Maple. You’ll also want to make sure you load the DocumentTools:-Canvas subpackage using with(DocumentTools:- Canvas).

If you take a look at our first example, below, the code may seem intimidating. However, let’s break it down, I promise it makes sense!

with(DocumentTools:-Canvas);
cv := NewCanvas([Text("Volume of Revolution", fontsize = 24), "This solid of revolution is created by rotating", f(x) = cos(x) + 1, Text("about the y=0 axis on the interval %1", 0 <= x and x <= 4*Pi), Plot3D("Student:-Calculus1:-VolumeOfRevolution(cos(x) + 1, x = 0 .. 4*Pi, output = plot, caption=``)")]);
ShareCanvas(cv);

The key command is Plot3D. This plots the desired graph and places it into a Maple Learn document. The code around it places text and a math group containing the equation being graphed. 


Let’s take a look at IntPractice now. The next example allows a student to practice evaluating an integral.

with(Grading):
IntPractice(Int(x*sin(x), x, 'output'='link'));

 This command allows you to enter an integral and the variable of integration, and then evaluates each step a student enters on their way to finding a result. The feedback given on every line is incredibly useful. Not only will it tell you if your steps are right, but will let you know if your last line is correct, i.e if the answer is correct.

Finally, let’s talk about SolvePractice.

with(Grading):
SolvePractice(2*x + 3 = 6*x - 9, 'output' = 'link');

This command takes an equation, and evaluates it for the specified variable. Like the IntPractice command, this command will check your steps and provide feedback. The image below shows how this command looks in Maple 2022.

These commands are the stepping stones for creating practice questions in Maple Learn. We can do so much more in Maple 2022 scripting than I realized, so let’s continue to learn together!

Some other examples of scripted documents in the Maple Learn Document Gallery are our steps documents, this document on the Four Color Visualization Theorem, and a color by numbers. As you can see, there’s a lot that can be done with Maple Scripting.

 Let us know in the comments if you’d like to see more on Maple 2022 scripting and Maple Learn.

If you do as much math as I do, you’ll likely agree that it’s important to take breaks from intensive work.  However, sometimes one wants to keep one’s mind stimulated with math.  This makes mathematical puzzles and games a perfect respite.  Alternatively, even if you don’t do as much math professionally, math puzzles are a fun and easily-accessible way to keep your mind sharp.  Games like sudoku and Rubik’s cubes are incredibly popular for good reason.

My personal favourite math puzzle is the nonogram, sometimes called hanjie, picross, or picture cross.  The game presents players with a blank grid of squares and clues indicating which ones should be colored in.  When the puzzle is solved, the colored squares depict a simple image.  You can read more thorough instructions here.

 


Nonograms are now available in Maple Learn!  These documents are coded using Maple scripts which can be viewed online in Maple Learn.  The document collection has pre-made puzzles and randomly-generated puzzles, and now you can create your own!  Use this document to create an image, and follow the instructions therein to generate the interactive puzzle.  Once you’ve created your own Maple Learn nonogram, use the sharelink to send it to friends!  Also keep your eye on the entire Maple Learn games collection for more in the future!

Bon vendredi à tous! Je suis de retour avec un autre article de mise à jour détaillant les nouveautés que nous avons apportés à Maple Learn cette semaine. Bonne lecture!

Tout d'abord, nous avons ajouté des permutations et des combinaisons, ainsi que la notation binomiale, à Maple Learn ! Gardez l’œil à l’affût des documents utilisant ces nouvelles fonctionnalités et consultez nos exemples ici et ici. Les opérations se trouvent dans la palette des fonctions. Nous espérons que cela permettra de rendre votre création de document avec Maple Learn encore plus agréable !

Nous avons également mis à jour la syntaxe des graphiques paramétriques pour utiliser l'opérateur tel que. Veuillez consulter notre page d’instruction pour plus de détails (ici). Remplacez simplement la virgule de l'ancienne syntaxe par le |. À partir de là, placez vos restrictions et le tour est joué ! Un graphique paramétrique utilisant l'opérateur tel que.

Enfin, quelques changements mineurs à Maple Learn. Nous avons ajusté la taille de police par défaut à une police de taille 20. De plus, nous avons fait en sorte qu'il remplace automatiquement <= ou >= par le symbole ≤ ou ≥.

J'espère que ces nouvelles fonctionnalités sont tout aussi intéressantes pour vous qu'elles le sont pour moi ! Faites-nous savoir ce que vous pensez dans les commentaires ci-dessous.

Happy Friday everyone! I’m back with another update post detailing the new changes we’ve made to Maple Learn this week. Just keep reading, and we’ll get right into them.

First, we’ve added permutations and combinations, along with binomial notation, to Maple Learn! Keep an eye out for documents using these new features, and check out our examples here and here.  The operations can be found in the functions palette. We hope that this allows even more fun with documents on Maple Learn!

We’ve also updated the syntax for parametric plots to use the such that operator. Please see our how-to page for more detail (here). Simply replace the comma from the old syntax with the |. From there, place your restrictions, and voila! A parametric plot using the such that operator.

Finally, some minor changes to Maple Learn. We’ve adjusted the default font size to 20 point font. As well, we’ve made it automatically change <= or >= to the ≤ or ≥ symbol.

I hope these new features are just as exciting to you as they are to me! Let us know what you think in the comments below.

Récemment, j’ai assisté à une présentation sur comment utiliser Maple Learn pour créer des documents artistiques et aujourd’hui  je vous écris pour vous donner mes conseils sur ce sujet. Maple Learn a beaucoup de fonctionnalités permettant de créer des documents visuels tout en étant un outil parfait pour faire vos devoirs.

Caractéristique 1 : Les formes

 Le premier document artistique de cette collection, le « Pi Pie » a été créé en utilisant la palette géométrie de Maple Learn. Elle fournit des modèles pour tracer des formes géométriques de façon plus simple. Le plus important dans ce document est l’utilisation de « Polygon() » pour créer le symbole pi. Insérez le nombre de points que vous voulez entre les parenthèses et le graphique connectera les points dans l’ordre entre eux. J’ai dessiné le symbole de pi sur un papier graphique et j’ai copié les points dans Maple Learn. C’est beaucoup d’effort, mais je pense que l’effet créé en vaut la peine.

 

Caractéristique 2 : Les fonctions

Ce personnage se nomme Milo je l’ai créé au lycée. Avec Maple Learn je l’ai reproduit en utilisant avec uniquement des fonctions. Voyons cela plus en détails :

  • La tête et les cheveux sont des fonctions paramétriques. Les personnes  se souvenant de leur cours de maths savent que (x, y) = (cos(t), sin(t)) est la formule d’ un cercle unitaire. Nous pouvons modifier l ‘étendue de t, les coefficients avant sin(t) et cos(t) et additionner ou soustraire les constantes pour créer des cercles partielles ou des ellipses.
  • Les yeux grisés sont fait avec des inégalités. Maple Learn permet de griser des régions d’inégalités automatiquement.
  • Le sourire de Milo est l’équation d’un cercle limité par “| y < -0.5”. L’opérateur barre  « such that » vous permet de limiter le domaine et l’étendue d’une fonction.
  • Le cœur vient d’une formule trouvée en ligne. Les mathématiciens ont découvert beaucoup d’équations incrédules de ce type !

Caractéristique 3 : L’animation

Mon document artistique final permet de voir germer une jolie fleur lorsque l’on utilise le curseur de la barre de défilement.  Après avoir défini une variable dans Maple Learn, la barre de défilement apparait et permet l’ajustement de la valeur de la variable. Par exemple :

  • Associez les coordonnées d’un point avec une variable. Évaluez une fonction à un point correspondant à cette variable et voyez comment lorsque la variable change, le point se déplace.
  • Associez l’étendue  d’une fonction paramétrique à une variable. Quand la variable change la fonction s’étend ou se contracte.
  • Utilisez une variable avec une fonction par morceaux. Quand la variable est dans la gamme lui correspondant vous pouvez la visualiser.

Les mathématiques sont une belle langue et chaque type d’expression peut ajouter un plus à votre toile. Mes techniques ne sont que le début de belles pièces d’arts dans Maple Learn. Montrez-nous vos documents artistiques ou vos techniques dans les commentaires !

 

It’s been a few months since the previous blog post on Maple Learn art, and the possibilities keep on growing.  I recently took part in a presentation on art in Maple Learn, and am here to pass on some tips and tricks to you, dear blog reader.  Maple Learn has a huge capacity for both creativity and ingenuity, and is the perfect program for doing your homework or exploring the world of mathematical art.  Check out the art I made here, and soon even more will be added to the Maple Learn Example Gallery!

 

Feature 1: Shapes

The first drawing in the batch, the “Pi Pie” (happy Pi Day!) was created using Maple Learn’s geometry palette.  The palette provides templates for plotting geometric shapes easily.  Most notably in this art is the use of Polygon() to create the pi symbol.  Insert as many points as you want between the brackets, and the plot will connect each one in order.  I drew pi on graph paper and copied down all the coordinates into Maple Learn.  A lot of work, but the effect was worth it.

 

Feature 2: Functions

This is Milo, a character I made in high school.  In Maple Learn, he is built entirely out of functions.  Let’s take a deep dive into what’s going on:

  • The head and hair are parametric functions.  Folks who’ve taken a math class that includes parametrics know that (x, y) = (cos(t), sin(t)) is the formula for a unit circle.  We can modify the range of t, coefficients in front of sin(t) and cos(t), and add or subtract constants to create partial circles and ellipses.

  • The shaded eyes are done with inequalities; Maple Learn shades inequality areas automatically.

  • Milo’s big smile is the equation of a circle with the added detail “| y < -0.5”.  The bar is the “such that” operator, which allows users to limit the domain and range of the function.

  • The body is a piecewise function: positive slope for x-values on the left side, negative slope for x-values on the right, and nothing in between.

  • The heart shape came from a formula found online.  Mathematicians have discovered some incredible equations!

 

Feature 3: Animation

By final piece sprouts into a beautiful flower as one moves a slider.  After defining a variable in Maple Learn, a slider appears to adjust it.  This can be used for interactive explorations of graphs and animations.  For example:

  • Associate the coordinates of a point with the variable or a function evaluated at the variable.  As the variable changes, the point will move.

  • Associate the range of a parametric function with the variable.  As the variable changes, more or less of the function will appear.

  • Use the variable in the conditions of piecewise functions.  When the variable is in the correct range, the shapes or functions you defined in the piecewise will appear.

 

Mathematics is a beautiful language, and every type of expression can add more to your canvas.  These techniques are just the beginning of beautiful Maple Learn art.  Feel free to share your own art or your favorite tips in the comments! 

La pandémie de COVID 19 nous a forcé à nous lancés dans l'apprentissage en ligne - mais après deux ans, il est clair que l'apprentissage en ligne est là pour rester. La bonne nouvelle est que de plus en plus de recherches sont disponibles et nous donnant plus d'informations sur les avantages et inconvénients des différentes méthodes d'enseignement ainsi que leur impact sur l'apprentissage de l’élèves. Tout cela conduit à une question : comment l'enseignement peut-il être plus efficace en ces temps difficiles ? Nous discuterons des recherches effectués et leur lien avec Maple Learn. Cependant, je tiens à préciser que je ne prétends pas être un spécialiste du sujet. Je suis simplement un étudiant qui veut améliorer l'apprentissage en ligne pour moi-même et mes pairs.

Dans ce contexte il existe trois principaux styles d'apprentissage, convenus par les psychologues : apprentissage passif, actif et interactif. Cependant, aujourd'hui, nous allons nous concentrer uniquement sur l'apprentissage interactif. L'apprentissage interactif est l'endroit où l'élève agit comme «un sujet d'activité éducative» (Kutbiddinova, Eromasova et Romanova, 2016). Dans la pratique, cela signifie généralement que l'étudiant collabore avec ses pairs. Cette pièce est plus difficile lorsque les cours sont en ligne et/ou asynchrones. Personnellement, j'ai eu du mal à établir des liens avec mes pairs pendant mes études en ligne, car notre principale forme de communication était les messages sur les forums de discussion. Nous discuterons des avantages de l'apprentissage interactif, puis discutons de la façon dont Maple Learn peut être utilisé dans le modèle d'apprentissage interactif.

Le principal avantage de l'apprentissage interactif est qu'il encourage la participation active de toutes les personnes concernées. Lorsqu'ils sont encouragés à interagir avec leurs pairs dans des groupes plus petits, cela permet une plus grande participation des membres du groupe, par rapport au fait de poser des questions à toute la classe et de leur demander de lever la main pour répondre. Dans la même façon, l'apprentissage interactif crée plus d'engagement avec le matériel éducatif, ainsi que plus d'initiative de la part de l’étudiant (Ibid).

Dans un exemple discuté par Anderson en 2014, les étudiants se sont mis par paires et ils ont discuté de leur réponse à une question. Les étudiants, lors de l'exercice, devaient choisir sur une réponse, puis discuter de leur raisonnement qui a mené à ce choix,, dans le but de faire changer d'avis l'autre étudiant. Cela a créé une compréhension du matériel, ainsi qu'un investissement émotionnel dans le sujet.

Alors, comment Maple Learn peut-il aider à faciliter l'apprentissage interactif dans un environnement en ligne ? Commençons par recréer l'exemple d'Anderson, mais en ligne et avec une légère variation pour un cours de mathématiques.

À l'aide de Maple Learn, l'élève peut suivre toutes ses étapes, copier ses notes papier ou résoudre l'équation au fur et à mesure qu'il tape. Il peut également utiliser du texte pour expliquer son raisonnement pour chaque étape ou pour placer des formules à côté des mathématiques qu'il a utilisées.

À partir de là, l'élève peut utiliser la fonction de partage instantané pour échanger des documents avec quelqu'un d'autre dans la classe. Cela permet aux deux étudiants de voir le travail et le raisonnement de l'autre, sans avoir à lire des notes manuscrites numérisées. Cela signifie également que l'examen peut se produire de manière asynchrone, permettant aux étudiants de différents endroits et/ou fuseaux horaires de discuter. Contrairement à l'exemple original, puisque nous parlons de mathématiques, l'élève n'essaie pas nécessairement de convaincre l'autre élève. Les commentaires sur les mathématiques sont davantage utilisés pour donner des commentaires ciblés et soit comprendre soit d'autres façons de résoudre le problème, soit la bonne façon si elle a été mal résolue à l'origine.

S'éloignant de l'exemple, cette méthode peut également être utilisée pour l’annotation par les pairs. Maple Learn propose de nombreuses couleurs de police de texte différentes, permettant aux étudiants de laisser des commentaires sur le document, puis de générer un nouveau lien de partage instantané à renvoyer à l'étudiant d'origine.

Il existe bien d’autres façons d'utiliser Maple Learn pour l'apprentissage interactif, mais nous aimerions également connaître vos idées ! Veuillez nous faire savoir dans les commentaires si vous avez utilisé Maple Learn d'autres manières interactives, ou si vous avez des questions ou des suggestions à ce sujet.

4 5 6 7 8 9 Page 6 of 9