Maple 13 Questions and Posts

These are Posts and Questions associated with the product, Maple 13

AOA. I want to plot the graph of the following function 

 

A new generalized complex representation of Euler gamma function in terms of Dirac delta function, which is

GAMMA(s) = 2*Pi*(sum((-1)^n*Dirac(s+n)/factorial(n), n = 0 .. infinity))

where*s = sigma+i*tau

for differenet values of parameters

 

AOA... I have facing a problem to edit a figure in MS worl after coping from MAPLE file. Because we my paper is accepted and will publised after minor revesion which given below:

PhD (Scholar)
Department of Mathematics

AOA... Dear when i expand

sum(sum(binomial(n-1, i)*x^(n-i-alpha)*(-a*n)^i*c[n]*GAMMA(n-i+1)/GAMMA(n-i-alpha+1), i = 0 .. n-1), n = ceil(alpha) .. M)

for M=2 and alpha=1/2 its answer is 

-sqrt(x)*c[1]*sqrt(-(1-x)/x)*(2*x-1)/(sqrt(Pi)*(1-x))-(1/4)*c[1]*hypergeom([3/2, 2], [3], 1/x)/(x*sqrt(x*Pi))-(4/3)*x^(3/2)*c[2]*(-(2-x)/x)^(3/2)*(2*x-1)/(sqrt(Pi)*(2-x))+(2/3)*c[2]*hypergeom([3/2, 2], [4], 2/x)/(x*sqrt(x*Pi))

which is very difficulty i want its answer in Gamma form i.e.

2*sqrt(x)*c[1]/sqrt(Pi)+(8/3)*x^(3/2)*c[2]/sqrt(Pi)-4*sqrt(x)*c[2]/sqrt(Pi)

Pl help me

AOA.. I want to generate a matrix for arbitrary value of n

B_n(x_1,\dots,x_n) = \det\begin{bmatrix}x_1 & {n-1 \choose 1} x_2 & {n-1 \choose 2}x_3 & {n-1 \choose 3} x_4 & {n-1 \choose 4} x_5 & \cdots & \cdots & x_n \\  \\
-1 & x_1 & {n-2 \choose 1} x_2 & {n-2 \choose 2} x_3 & {n-2 \choose 3} x_4 & \cdots & \cdots & x_{n-1} \\  \\
0 & -1 & x_1 & {n-3 \choose 1} x_2 & {n-3 \choose 2} x_3 & \cdots & \cdots & x_{n-2} \\  \\
0 & 0 & -1 & x_1 & {n-4 \choose 1} x_2 & \cdots  & \cdots & x_{n-3} \\  \\
0 & 0 & 0 & -1 & x_1 & \cdots & \cdots & x_{n-4} \\  \\
0 & 0 & 0 & 0 & -1 & \cdots & \cdots & x_{n-5} \\  \\
\vdots & \vdots & \vdots &  \vdots & \vdots & \ddots & \ddots & \vdots  \\  \\
0 & 0 & 0 & 0 & 0 & \cdots & -1 & x_1  \end{bmatrix}.

AOA... Dears! When i solve the following differential equations

-(diff(lambda(s), s))-2*(diff(lambda(s), s, s))-(diff(lambda(s), s, s, s)) = 0

i got

lambda(s) = _C1+_C2*exp(-s)+_C3*exp(-s)*s

 here _C1,_C2 and _C3 are constant of intergration but i want the constant of integration of the following type

C[1],C[2] and C[3]

due to some reson pl help

Book1.xlsHelow ,

 I want to plot a gaph the data is store in excel sheet. thanks in advance

 

AOA... I want to plot the following function which is continuous in [0,3]

f:=x^2+1  for x belong to [0,1]

f:=x^2-1  for x belong to [1,2]

f:=x+1  for x belong to [2,3]

Kindly help...

AOA... I wan to plot the following piecewise function

 

f := x^2+1         if x belongs to (0,1)

f := x-x^2          if x belongs to (1,2)

f := x+1-x^2       if x belongs to (2,3)

AOA... There are three question

1. I want to convert exp(Iota*theta) into ternometric function i.e., 

exp(Iota*theta) = cos(theta)+Iota*sin(theta)

Is there any comand pl help...

2. Also i want to rationalize the complex number...

3. I want to seprate real and imaginary parts of a comaplex numbers

 

 

I want to introduce a matrix of order M by M as for any m, M, pl help as show in file

 

Help.mw

 

 

AOA... I want to solve the following system in maple pl help

 

sys_ode := diff(y(eta), eta, eta, eta)+3*y(eta)*(diff(y(eta), eta, eta))-2*(diff(y(eta), eta))^2+x(eta) = 0, diff(x(eta), eta, eta)+3*Pr*y(eta)*(diff(x(eta), eta)) = 0

ics := y(0) = 0, (D(y))(0) = 0, (D(y))(infinity) = 0, x(0) = 1, x(infinity) = 0

Help.mw

AOA... Pl correct it

Help.mw

AOA...I want to introduce an operator to find the derivative of fractional order i.e.,

 

J^((alpha)) x^(k):=(GAMMA(k+1))/(GAMMA(k-alpha+1))x^(k-alpha):

 

when i applied J^(1/2) on x^2+x^3 it gives

 

GAMMA(3)*x^(3/2)/GAMMA(7/2)+GAMMA(4)*x^(5/2)/GAMMA(9/2)

 

Help.mw

AOA... I want to convert system of equations into matirx form.

F[0] := u[0, n]-u[0, n-1]+u[1, n]-u[1, n-1]+u[2, n]-u[2, n-1]+u[3, n]-u[3, n-1]

F[1] := u[0, n]-u[0, n-1]-u[1, n]+u[1, n-1]+u[2, n]-u[2, n-1]-u[3, n]+u[3, n-1];

F[2] := u[0, n]/P-u[0, n-1]/P-.7071067810*u[1, n]/P+.7071067810*u[1, n-1]/P+.7071067810*u[3, n]/P-.7071067810*u[3, n-1]/P+0.4549512860e-1*exp(-1.*t)-.3431457508*u[2, n]+.3431457508*u[2, n-1]+1.556349186*u[3, n]-1.556349186*u[3, n-1] = 0;

F[3] := u[0, n]/P-u[0, n-1]/P-.7071067810*u[1, n]/P+.7071067810*u[1, n-1]/P+.7071067810*u[3, n]/P-.7071067810*u[3, n-1]/P+0.4549512860e-1*exp(-1.*t)-.3431457508*u[2, n]+.3431457508*u[2, n-1]+1.556349186*u[3, n]-1.556349186*u[3, n-1] = 0;

I want to export the above system of equation in to matrices of as

AU[n]+BU[n-1]-C = O;

where*U[n] = Typesetting[delayDotProduct](Vector(4, {(1) = u[0, n], (2) = u[1, n], (3) = u[2, n], (4) = u[3, n]}), a, true)*n*d*U[n-1] and Typesetting[delayDotProduct](Vector(4, {(1) = u[0, n], (2) = u[1, n], (3) = u[2, n], (4) = u[3, n]}), a, true)*n*d*U[n-1] = (Vector(4, {(1) = u[0, n-1], (2) = u[1, n-1], (3) = u[2, n-1], (4) = u[3, n-1]})), Help me plz;

Help_Constrct.mw

I want to find the solution in a special form.
How can I do it?
Here is what I tried:

(Maple)

(Maple)


In the left hand side u_1 is not changed in  D(u_1).
I want to substitute and evalute (differentiate) it.

Thanks,  Sandor

 

 

 

 

First 21 22 23 24 25 26 27 Last Page 23 of 54