Maple 18 Questions and Posts

These are Posts and Questions associated with the product, Maple 18

I am trying to find a general solution to the 1D-wave equation

Eq1:=diff(u(x,t),t$2)=diff(u(x,t),x$2);

pdsolve(Eq1,HINT=f(x)*g(t)); # Hinting pdsolve gives general solution using separation of variables

pdsolve({Eq1,u(x,0)=f(x),D[2](u)(x,0)=g(x)}); # without HINT and using intial conditions, I get travelling wave solution

pdsolve({Eq1,u(x,0)=f(x),D[2](u)(x,0)=g(x)},HINT=f(x)*g(t)); # Now when I try to use hint and ICs both, pdsolve return nothing.

I want to use separation of variables to find solution to the wave equation.

Any comment?

Thanks

Hi,

 

I am trying to use a simple sum ( f:=t,n->sum(MyFunction(k,t),k=1..n) ), but the sum function doesn't "work" :

Error, (in MTM:-sum) invalid input: ArrayTools:-AddAlongDimension expects its 2nd argument, DimToAdd, to be of type posint, but received k = 1 .. n

 

As far as I can understand, I have loaded the package MTM, and now, the sum has been redefined to do something else, and now I can't use a "normal" sum anymore. Or can I ?

Does someone know how to use the "normal" sum without unloading the MTM package ?

 

Thanks

 

without _Y(t) and DESol?

f := diff(u(t), t$2) + (2/t-1/t^2*p(1/t))*diff(u(t),t) + 1/t^4*q(1/t)*u(t) = 0;
dsolve(f,u(t));
u(t) = DESol({q(1/t)*_Y(t)/t^4+(2/t-p(1/t)/t^2)*(diff(_Y(t), t))+diff(_Y(t), t, t)}, {_Y(t)})

just would like to find u1 and u2 solution

how to transform this differential equation with a substitution?

f := diff(u(x),x$2) + p(x)*diff(u(x),x)+q(x)*u(x)=0;
transformed := subs(x=1/t, f);

 

f := diff(u(x),t$2)*diff(t,x$2) + p(x)*diff(u(x),t)*diff(t,x)+q(x)*u(x)=0;

diff(1/t,t);
diff(1/t,t$2);

 

x = 1/t
dx/dt = -1/t^2
d2x/dt2 = 2/t^3

d2u/dt2*dt2/dx2
du/dt*dt/dx
diff(u(t),t$2)*1/(2/t^3) + p(t)*diff(u(t),t)*1/(-1/t^2)+q(t)*u(t)

restart;
f := u2*1/(2/t^3) + p(t)*u1*1/(-1/t^2)+q(t)*u;
f2 := collect(f/t^3*2, {u2, u1, u});
subs(u2 = diff(u(t),t$2), subs(u1 = diff(u(t), t), subs(u=u(t), f2)));

but not equal to below which is in book, is this equation wrong in book?

f := diff(u(t), t$2) + (2/t-1/t^2*p(1/t))*diff(u(t),t) + 1/t^4*q(1/t)*u(t) = 0;

 

can we solve analytically a system of non-linear algebraic equation? my system is like:

 

b1 = a x + b y + c z

b2 = d x2 + e y2 + f z2

b3 = g x3 + h y3 + k z3

 

thanks

I an experimenting with Groebner basis. Have a set 17 equations. There are 12 unknowns. Using 14 of the equations and tdeg, the system produced 65 equations. How do I get a list of the monomials in this new list?

how to further remove _Z with explicit in two variables case?

da := [[1,m],[2,m2],[3,1],[4,2],[5,3],[6,4]];
f := PolynomialInterpolation(da, z):
solution := solve(f=-z, z, explicit);

 

 from galois group function's result?                                     

g[1] := (diff(a(t), t))/(t^2-1) = 1;
g[2] := (diff(a(t), t))*(diff(b(t), t)) = 1;
dsolve({eq2, eq3});
with(DynamicSystems):
sys := DiffEquation([g[1]=1, g[2]=1], inputvariable = [b(t)], outputvariable = [a(t), b(t)]):
ts := 0.1:
t_sim := 10.0:
#in_t := Sine(1, 1, 0, 0):
#in_z := Sine(1, 1, 0, 0, samplecount = round(t_sim/ts), sampletime = ts, discrete):
in_t := t:
sol := Simulate(sys, [in_t]):
p1 := plots[odeplot](sol, [[t, a(t)]], t = 0 .. t_sim, numpoints = 200, color = red):
Error, (in DEtools/convertsys) unable to convert to an explicit first-order system
Error, (in plots/odeplot) input is not a valid dsolve/numeric solution

would like to draw the graph of x^2-1

with below sys instead of x^2-1 

sys := {-(1/2)*(-x-1+sqrt(-3*x^2-2*x-3))*(diff(y(a, b), b))/x^2+(diff(y(a, b), a))*(diff(y(a, b), b)), (1/2)*(x+1+sqrt(-3*x^2-2*x-3))*(diff(y(a, b), a))/x^2+(x^2+x+1)/x^4, (1/2)*(x+1+sqrt(-3*x^2-2*x-3))*(diff(y(a, b), a))/x^2-(1/2)*(-x-1+sqrt(-3*x^2-2*x-3))*(diff(y(a, b), b))/x^2+(x^2+x+1)/x^4};
IBC:={x=1,y(a,3)=(3-1)*(3+1),y(0,b)=0,y(1,b)=0}:
pds:=pdsolve(sys,IBC,numeric,spacestep=140);
plots[display]([seq(pds:−plot(v,t=i10),i=0..5)]):

 

f2 := (diff(y(a, b), a)-(-(1/2)*x-1/2+(1/2)*sqrt(-3*x^2-2*x-3))/x^2)*(diff(y(a, b), b)-(-(1/2)*x-1/2-(1/2)*sqrt(-3*x^2-2*x-3))/x^2);
f := collect(expand(f2), [diff(y(a,b),a),diff(y(a,b),b),diff(y(a,b),a)*diff(y(a,b),b)]);

I'm having trouble with using constrained optimization to solve a problem.

The problem is set up as:

Max: w=x1/2 y1/4

Subject to: K=x+4. K is a constant.

 

I'm not sure where to start.

 from permutation group to permutation group and inverse this mapping?

how to do?

f := x^4-c1*x^3+c2*x^2-c3*x+c4;

restart;
ferrai := -x1^3*x2*x3*x4-x1^2*x2^2*x3^2-x1^2*x2^2*x4^2-x1^2*x3^2*x4^2-x1*x2^3*x3*x4-x1*x2*x3^3*x4-x1*x2*x3*x4^3-x2^2*x3^2*x4^2+x1^2*x2*x3*y+x1^2*x2*x4*y+x1^2*x3*x4*y+x1*x2^2*x3*y+x1*x2^2*x4*y+x1*x2*x3^2*y+x1*x2*x4^2*y+x1*x3^2*x4*y+x1*x3*x4^2*y+x2^2*x3*x4*y+x2*x3^2*x4*y+x2*x3*x4^2*y-x1*x2*y^2-x1*x3*y^2-x1*x4*y^2-x2*x3*y^2-x2*x4*y^2-x3*x4*y^2+y^3;
coeff(ferrai, y^3);
coeff(ferrai, y^2);
coeff(ferrai, y);
res := ferrai - coeff(ferrai, y^3)*y^3 - coeff(ferrai, y^2)*y^2 - coeff(ferrai, y)*y;

c2 := -coeff(ferrai, y^2)/coeff(ferrai, y^3);
sys1 := c1*c3 - 4*c4 = coeff(ferrai, y)/coeff(ferrai, y^3);
sys2 := -c3^2-(c1^2)*c4+4*c2*c4 = res;
solve([sys1, sys2],[c1,c3,c4]);

number of equations is not enough, is it possible to find back c1,c3,c4?

though c2 is easy to know

how to find [[1,3,2,4],[1,2]] and [2,3][[1,3,2,4],[1,2]] and [2,4],[[1,3,2,4],[1,2]]?

and why Orbits(G) put permutation group into power, how to display the result of this power group?

i use this or quartic polynomials' resolvent

with(GroupTheory):
G := SpecialUnitaryGroup(3, 1);
Orbits(G);
Orbit(1,G);
Orbit(3,G);

First 48 49 50 51 52 53 54 Last Page 50 of 86