Maple 18 Questions and Posts

These are Posts and Questions associated with the product, Maple 18

hi.may  help me for solve this nonlinear equations by numeric solver maple39.d39.pdfocx39.pdf

thanks alot

file format is pdf and word type

 

Hi,

I'm trying to compile a worksheet and save it on Mac OSX. The worksheet ends with this code:

>

> save `E:\\class work\\THERMODYNAMICS\\ThermoSoft\\Compiled\\SteamTables.m`;

>

The guide tells me to change the path to a user specified folder where the .m file will be saved.

Since the path name already given is a Windows path, I have to change that to a Mac path.

My problem is, that i don't know what I should write?

I have tried writing:

save `\\Macintosh HD\\Users\\Name\\Folder\\SteamTables.m`;

But it gives an error, and can't save the file. 

Hi everyone,

Consider this Maple 18 doc:

FareySeq.mw

 

I am having the same problem as in:

http://www.mapleprimes.com/questions/203593-Maple-13-Fast-Maple-18-Crawling#comment213548

Namely, the produced animated .gif contains only one frame. Animation doesn't work, even though the button of the animation is active after I click on frame #1.

I have acer's solution at the end, but it doesn't work in this case either.

Breaks in both Maple 13 and 18.

TIA,

Yiannis

 

hi .how i can solve nonlinear equation with unknown prameter omega as below

thanksfrekans.mw

Hi All,

 

I am working on modeling dynamics for a robot. It requires a write some long expressions into C++.  When I do it, it has some strange problem in creation of C++ code from a vector.

Here is an example of the problem. I have a multivariable polynomial term, I using coeffs to get its coefficients and corresponding unevaluated variables, which works fine. But I can't convert the vector into C++

Ca := coeffs(term, [W, Rf, Rr, dxf, rcf, rcr], 'L'):

L;                           Rf, Rr, dxf

C(L, resultname="L11", output="dSpDdx1.cpp");

Error, (in Translate) options [Rr, dxf] not recognized.

I don't know why maple thought the unevaluated variable Rr and dxf are options instead of the vector I want to convert into c++. Does any one know what I did wrong?

 

Thanks in advance.

 

Everett

https://drive.google.com/file/d/0Bxs_ao6uuBDUVkE1b2pmcnljcnc/view?usp=sharing
https://drive.google.com/file/d/0Bxs_ao6uuBDUbE56R3Z1c0tLRkE/view?usp=sharing

restart;
changering := proc(Equation1, f3,g3)
g1 := (x,y)-> f3;
f1 := (x,y)-> g3;
h:=subs(g=g1, Equation1);
h:=subs(f=f1, h);
h:=subs(0=0, h);
return h;
end proc:
Eq1 := f(x,g(x,y)) + f(x,y);
h2 := changering(Eq1,x+y, x+y);
h2;

g1 := (x,y)-> x+y;
f1 := (x,y)-> x+y;
h:=subs(g=g1, Eq1);
h:=subs(f=f1, h);
h:=subs(0=0, h);

 

I'm writing an algorithm that takes a while and I'd like to print status messages periodically. I typically use the command line interface, and this is no problem. I just do a printf whenever I need.

However, some people who will use this code prefer to use the GUI, and I've found that the GUI tends to buffer the output from printf, printing 20-30 printf statements in clumps instead of as they're called. Is there any remedy for this?

hi.i am a problem with rule solve or fsolve in maple....please see attached file and say your comments

thanks

equ.mw

 

plot(t+1, t); plot(t+1, t = -1 .. 1);

Error, (in plot) incorrect first argument t+1
Error, (in plot) incorrect first argument t+1

Every time I try to write a procedure I get stuck.

This time is no different:

restart;

global a:=0.081819221, PI:=3.1415926535897932384626433832795;
Ecce:=proc(lt)
lat:=lt*(PI/180);
b:=((1-a*sin(lat))/(1+a*sin(lat)))^(a/2));
t:=ln((tan(PI/4)+lat/2));
d:=3437.7468*t*b;
return d;
end proc;

I digit the following to get a result
Ecce(45.2112);

and this is what I get (in blue)
Ecce(45.2112)

Every single time. I can never have a procedure that works right away. It's getting on my nerves

This Question involves using dsolve(..., numeric) for an IVP specifed by a procedure. This is based on a Question asked earlier today. In this Question, I have no interest in how to solve this IVP or in why this solution technique fails. In the worksheet below, the odeplot command seems to get stuck in an infinite loop (I am not interested in why that happens), and I press the stop button (in the Standard GUI). Then, instead of the usual Warning, computation interupted message followed by a return to the command prompt, I get an informative message and the plot that has been computed so far. This seems like a very useful feature: to return the results computed so far after an interuption. Furthermore, those results are programmatically accessible. My Question is How is this done? How do you trap the stop button and return the results?


restart:


Sys:= proc(N,t,Y,YP)

local eqs,yp2,yp4;

     YP[1]:= Y[2];

     YP[3]:= Y[4];

     eqs:= [
          yp2*Y[3]+yp4*Y[2]*sin(Y[1]^2)+cos(yp4*Y[3]) = sin(t),
          Y[2]*yp4*sin(Y[1]*Y[3])+5*yp2*Y[4]*cos(Y[1]^2)+t^2*Y[1]*Y[3]^2 = exp(-Y[3]^2)
     ];

     YP[2],YP[4]:= op(subs(fsolve(eqs,{yp2=1,yp4=2}),[yp2,yp4]))

end proc:

res:= dsolve(
     numeric, procedure= Sys, initial= Array([1,1,2,2]),
     number= 4, procvars= [x1(t),diff(x1(t),t),x2(t),diff(x2(t),t)],
     start= 0, maxfun= 0
):

 

plots:-odeplot(res, [t,x1(t)], 0..0.27);
#After 10 seconds or so, (I did)/(you should) hit the stop button.

Warning, cannot evaluate the solution further right of .25109286, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts

#Note that the command's result is still programmatically accessible:

P:= %;

PLOT(CURVES(Array(1..201, 1..2, {(1, 1) = .0, (1, 2) = 1.0, (2, 1) = 0.135e-2, (2, 2) = 1.001349729199153, (3, 1) = 0.27e-2, (3, 2) = 1.0026989169868508, (4, 1) = 0.405e-2, (4, 2) = 1.004047563645964, (5, 1) = 0.54e-2, (5, 2) = 1.005395669456049, (6, 1) = 0.675e-2, (6, 2) = 1.0067432346933451, (7, 1) = 0.81e-2, (7, 2) = 1.0080902596307788, (8, 1) = 0.945e-2, (8, 2) = 1.0094367445379593, (9, 1) = 0.108e-1, (9, 2) = 1.0107826896811836, (10, 1) = 0.1215e-1, (10, 2) = 1.01212809532343, (11, 1) = 0.135e-1, (11, 2) = 1.0134729617243639, (12, 1) = 0.1485e-1, (12, 2) = 1.0148172891403349, (13, 1) = 0.162e-1, (13, 2) = 1.0161610778243784, (14, 1) = 0.1755e-1, (14, 2) = 1.0175043280262126, (15, 1) = 0.189e-1, (15, 2) = 1.0188470399922427, (16, 1) = 0.2025e-1, (16, 2) = 1.020189213965557, (17, 1) = 0.216e-1, (17, 2) = 1.0215308501859302, (18, 1) = 0.2295e-1, (18, 2) = 1.0228719488898206, (19, 1) = 0.243e-1, (19, 2) = 1.0242125103103719, (20, 1) = 0.2565e-1, (20, 2) = 1.0255525346774133, (21, 1) = 0.27e-1, (21, 2) = 1.0268920222174571, (22, 1) = 0.2835e-1, (22, 2) = 1.0282309731537027, (23, 1) = 0.297e-1, (23, 2) = 1.0295693877060321, (24, 1) = 0.3105e-1, (24, 2) = 1.0309072660910137, (25, 1) = 0.324e-1, (25, 2) = 1.0322446085219004, (26, 1) = 0.3375e-1, (26, 2) = 1.0335814152086296, (27, 1) = 0.351e-1, (27, 2) = 1.0349176863578238, (28, 1) = 0.3645e-1, (28, 2) = 1.0362534221727904, (29, 1) = 0.378e-1, (29, 2) = 1.037588622853522, (30, 1) = 0.3915e-1, (30, 2) = 1.0389232885966946, (31, 1) = 0.405e-1, (31, 2) = 1.0402574195956709, (32, 1) = 0.4185e-1, (32, 2) = 1.041591016040497, (33, 1) = 0.432e-1, (33, 2) = 1.0429240781179057, (34, 1) = 0.4455e-1, (34, 2) = 1.044256606011312, (35, 1) = 0.459e-1, (35, 2) = 1.0455885999008183, (36, 1) = 0.4725e-1, (36, 2) = 1.04692005996321, (37, 1) = 0.486e-1, (37, 2) = 1.0482509863719582, (38, 1) = 0.4995e-1, (38, 2) = 1.0495813792972193, (39, 1) = 0.513e-1, (39, 2) = 1.0509112389058335, (40, 1) = 0.5265e-1, (40, 2) = 1.0522405653613263, (41, 1) = 0.54e-1, (41, 2) = 1.0535693587831985, (42, 1) = 0.5535e-1, (42, 2) = 1.0548976192244952, (43, 1) = 0.567e-1, (43, 2) = 1.0562253468268996, (44, 1) = 0.5805e-1, (44, 2) = 1.0575525417260814, (45, 1) = 0.594e-1, (45, 2) = 1.058879204046671, (46, 1) = 0.6075e-1, (46, 2) = 1.0602053339022601, (47, 1) = 0.621e-1, (47, 2) = 1.0615309313954047, (48, 1) = 0.6345e-1, (48, 2) = 1.0628559966176196, (49, 1) = 0.648e-1, (49, 2) = 1.0641805296493847, (50, 1) = 0.6615e-1, (50, 2) = 1.0655045305601394, (51, 1) = 0.675e-1, (51, 2) = 1.0668279994082868, (52, 1) = 0.6885e-1, (52, 2) = 1.06815093624119, (53, 1) = 0.702e-1, (53, 2) = 1.0694733410951756, (54, 1) = 0.7155e-1, (54, 2) = 1.0707952139955317, (55, 1) = 0.729e-1, (55, 2) = 1.0721165549565084, (56, 1) = 0.7425e-1, (56, 2) = 1.0734373639813168, (57, 1) = 0.756e-1, (57, 2) = 1.074757641062132, (58, 1) = 0.7695e-1, (58, 2) = 1.0760773861800887, (59, 1) = 0.783e-1, (59, 2) = 1.0773965993052852, (60, 1) = 0.7965e-1, (60, 2) = 1.078715280396781, (61, 1) = 0.81e-1, (61, 2) = 1.0800334294025973, (62, 1) = 0.8235e-1, (62, 2) = 1.081351046259718, (63, 1) = 0.837e-1, (63, 2) = 1.082668130894088, (64, 1) = 0.8505e-1, (64, 2) = 1.0839846832206155, (65, 1) = 0.864e-1, (65, 2) = 1.0853007031431687, (66, 1) = 0.8775e-1, (66, 2) = 1.08661619055458, (67, 1) = 0.891e-1, (67, 2) = 1.0879311453366416, (68, 1) = 0.9045e-1, (68, 2) = 1.0892455673601087, (69, 1) = 0.918e-1, (69, 2) = 1.0905594564846983, (70, 1) = 0.9315e-1, (70, 2) = 1.0918728125590897, (71, 1) = 0.945e-1, (71, 2) = 1.0931856354209235, (72, 1) = 0.9585e-1, (72, 2) = 1.0944979248968028, (73, 1) = 0.972e-1, (73, 2) = 1.0958096808022917, (74, 1) = 0.9855e-1, (74, 2) = 1.097120902941917, (75, 1) = 0.999e-1, (75, 2) = 1.098431591109168, (76, 1) = .10125, (76, 2) = 1.0997417450864941, (77, 1) = .1026, (77, 2) = 1.1010513646453082, (78, 1) = .10395, (78, 2) = 1.1023604495459853, (79, 1) = .1053, (79, 2) = 1.1036689995378606, (80, 1) = .10665, (80, 2) = 1.1049770143592332, (81, 1) = .108, (81, 2) = 1.1062844937176912, (82, 1) = .10935, (82, 2) = 1.1075914369810387, (83, 1) = .1107, (83, 2) = 1.108897843678326, (84, 1) = .11205, (84, 2) = 1.1102037134210607, (85, 1) = .1134, (85, 2) = 1.1115090457860155, (86, 1) = .11475, (86, 2) = 1.1128138403152263, (87, 1) = .1161, (87, 2) = 1.1141180965159976, (88, 1) = .11745, (88, 2) = 1.1154218138608973, (89, 1) = .1188, (89, 2) = 1.1167249917877577, (90, 1) = .12015, (90, 2) = 1.118027629699678, (91, 1) = .1215, (91, 2) = 1.1193297269650222, (92, 1) = .12285, (92, 2) = 1.1206312829174188, (93, 1) = .1242, (93, 2) = 1.1219322968557623, (94, 1) = .12555, (94, 2) = 1.123232768044212, (95, 1) = .1269, (95, 2) = 1.1245326957121933, (96, 1) = .12825, (96, 2) = 1.1258320790543948, (97, 1) = .1296, (97, 2) = 1.1271309172307735, (98, 1) = .13095, (98, 2) = 1.1284292093665487, (99, 1) = .1323, (99, 2) = 1.1297269545522062, (100, 1) = .13365, (100, 2) = 1.131024151843497, (101, 1) = .135, (101, 2) = 1.1323208002614376, (102, 1) = .13635, (102, 2) = 1.133616898792309, (103, 1) = .1377, (103, 2) = 1.1349124463876585, (104, 1) = .13905, (104, 2) = 1.1362074419642976, (105, 1) = .1404, (105, 2) = 1.137501884404303, (106, 1) = .14175, (106, 2) = 1.1387957725550182, (107, 1) = .1431, (107, 2) = 1.1400891052290492, (108, 1) = .14445, (108, 2) = 1.1413818812042709, (109, 1) = .1458, (109, 2) = 1.1426740992238196, (110, 1) = .14715, (110, 2) = 1.1439657579960996, (111, 1) = .1485, (111, 2) = 1.1452568561947796, (112, 1) = .14985, (112, 2) = 1.1465473922561644, (113, 1) = .1512, (113, 2) = 1.1478373642224777, (114, 1) = .15255, (114, 2) = 1.14912677047606, (115, 1) = .1539, (115, 2) = 1.1504156093257876, (116, 1) = .15525, (116, 2) = 1.1517038789853584, (117, 1) = .1566, (117, 2) = 1.1529915775732906, (118, 1) = .15795, (118, 2) = 1.1542787031129238, (119, 1) = .1593, (119, 2) = 1.1555652535324183, (120, 1) = .16065, (120, 2) = 1.1568512266647548, (121, 1) = .162, (121, 2) = 1.1581366202477354, (122, 1) = .16335, (122, 2) = 1.1594214319239837, (123, 1) = .1647, (123, 2) = 1.1607056592409424, (124, 1) = .16605, (124, 2) = 1.1619892996508772, (125, 1) = .1674, (125, 2) = 1.1632723505108726, (126, 1) = .16875, (126, 2) = 1.1645548090828357, (127, 1) = .1701, (127, 2) = 1.165836672533493, (128, 1) = .17145, (128, 2) = 1.1671179379343934, (129, 1) = .1728, (129, 2) = 1.1683986022619053, (130, 1) = .17415, (130, 2) = 1.169678662397219, (131, 1) = .1755, (131, 2) = 1.1709581151263448, (132, 1) = .17685, (132, 2) = 1.172236957140115, (133, 1) = .1782, (133, 2) = 1.1735151850341814, (134, 1) = .17955, (134, 2) = 1.174792795282732, (135, 1) = .1809, (135, 2) = 1.1760697835893776, (136, 1) = .18225, (136, 2) = 1.1773461457270373, (137, 1) = .1836, (137, 2) = 1.1786218774884782, (138, 1) = .18495, (138, 2) = 1.179896974422449, (139, 1) = .1863, (139, 2) = 1.181171431833682, (140, 1) = .18765, (140, 2) = 1.182445244782893, (141, 1) = .189, (141, 2) = 1.1837184080867809, (142, 1) = .19035, (142, 2) = 1.1849909163180268, (143, 1) = .1917, (143, 2) = 1.1862627638052967, (144, 1) = .19305, (144, 2) = 1.1875339446332376, (145, 1) = .1944, (145, 2) = 1.1888044526424812, (146, 1) = .19575, (146, 2) = 1.1900742814296414, (147, 1) = .1971, (147, 2) = 1.1913434243473158, (148, 1) = .19845, (148, 2) = 1.1926118745040841, (149, 1) = .1998, (149, 2) = 1.193879624764512, (150, 1) = .20115, (150, 2) = 1.195146667749144, (151, 1) = .2025, (151, 2) = 1.1964129956664247, (152, 1) = .20385, (152, 2) = 1.1976785994686407, (153, 1) = .2052, (153, 2) = 1.1989434702227826, (154, 1) = .20655, (154, 2) = 1.2002075985381981, (155, 1) = .2079, (155, 2) = 1.2014709744148189, (156, 1) = .20925, (156, 2) = 1.2027335872431564, (157, 1) = .2106, (157, 2) = 1.2039954258043046, (158, 1) = .21195, (158, 2) = 1.2052564782699382, (159, 1) = .2133, (159, 2) = 1.2065167322023145, (160, 1) = .21465, (160, 2) = 1.2077761745542712, (161, 1) = .216, (161, 2) = 1.2090347916692288, (162, 1) = .21735, (162, 2) = 1.2102925692811892, (163, 1) = .2187, (163, 2) = 1.2115494925044938, (164, 1) = .22005, (164, 2) = 1.2128055446540236, (165, 1) = .2214, (165, 2) = 1.2140607079057624, (166, 1) = .22275, (166, 2) = 1.2153149635677838, (167, 1) = .2241, (167, 2) = 1.216568291442756, (168, 1) = .22545, (168, 2) = 1.2178206698279472, (169, 1) = .2268, (169, 2) = 1.2190720755152231, (170, 1) = .22815, (170, 2) = 1.2203224837910482, (171, 1) = .2295, (171, 2) = 1.221571868436484, (172, 1) = .23085, (172, 2) = 1.22282020172719, (173, 1) = .2322, (173, 2) = 1.224067453329788, (174, 1) = .23355, (174, 2) = 1.225313589366023, (175, 1) = .2349, (175, 2) = 1.226558573530251, (176, 1) = .23625, (176, 2) = 1.227802365810496, (177, 1) = .2376, (177, 2) = 1.229044922475539, (178, 1) = .23895, (178, 2) = 1.2302861960749185, (179, 1) = .2403, (179, 2) = 1.2315261354389295, (180, 1) = .24165, (180, 2) = 1.2327646837576534, (181, 1) = .243, (181, 2) = 1.2340017760538164, (182, 1) = .24435, (182, 2) = 1.2352373405616506, (183, 1) = .2457, (183, 2) = 1.2364712973589982, (184, 1) = .24705, (184, 2) = 1.2377035562942194, (185, 1) = .2484, (185, 2) = 1.2389340149185948, (186, 1) = .24975, (186, 2) = 1.2401625575137232, (187, 1) = .2511, (187, 2) = undefined, (188, 1) = .25245, (188, 2) = undefined, (189, 1) = .2538, (189, 2) = undefined, (190, 1) = .25515, (190, 2) = undefined, (191, 1) = .2565, (191, 2) = undefined, (192, 1) = .25785, (192, 2) = undefined, (193, 1) = .2592, (193, 2) = undefined, (194, 1) = .26055, (194, 2) = undefined, (195, 1) = .2619, (195, 2) = undefined, (196, 1) = .26325, (196, 2) = undefined, (197, 1) = .2646, (197, 2) = undefined, (198, 1) = .26595, (198, 2) = undefined, (199, 1) = .2673, (199, 2) = undefined, (200, 1) = .26865, (200, 2) = undefined, (201, 1) = .27, (201, 2) = undefined}, datatype = float[8], order = C_order), COLOUR(RGB, .47058824, 0., 0.54901961e-1)), AXESLABELS(t, x1))

``


Download trap_stop_button.mw

As part of a project, I am numerically estimating the roots of many large polynomials. Occasionally, "fsolve" fails with strange errors related to "fsolve/refine2". Searches for these error messages have turned up nothing.

I've inluded the code below that causes the error on Maple 18.02. I apologize for the polynomial in question being so long, it's the shortest example I have. The error it generates is:

    Error, (in fsolve/refine2) invalid input: evalf expects its 2nd argument, n, to be of type posint, but received undefined

Is this a bug? Or am I missing some fsolve option to prevent this? Note that it only happens when the "complex" flag is used.

=========

P := x^14-22702264347017701018473605850972699930097274504938699916055555261201515180511538865331807292689345943133521696082918467714371257277276696385067641909170155322906230250853577229812913946663078548646992393337618113886746876557117483839533553328895358682670189394678910311793504505447628428181885141769168591937690303328913335175451328463754619536253583902806843310134957600949886784187209785783810122275010505534415815566439121541947044486358488039865870455952098827525405324562601732796858645293515431747164008309785658410612354201118685855495413079021176507985235094746401708925593687656572387531020719291601076812080687859808747213536777976702071405128537760507468013438105233313663196919816564525291458692028177366393652501832447863872200682143768513389322886600569382594287138458765510827267842205096062437750804878586024353928794905249283675708441066101095406513448522689302522442783437142289641259057413952301148939774149714785/3195755849586795631956816504521213454239300164039404772924331154185577854140658969534719471406093912112781063157828311505891258148739680804289213024862131311540960306206602785748866445362483281617891374949555209869677857419473553982132073059025609434698683760348542259396937054082293168625919023158753310878489047944378154369352523436731294817697449949932655665007647918855300664365159027040571937825740235967492228453331261542499260943085539271304638576578246276634403350307801994081681247214869084246168101721298760198550961832560608341435638093413744839736250679074198753022491225840288065341597851066663786665723409977381822591654466626645542917017628998630902708076612502066607817250779545511895971357711983287763127653752300554550391349040027472903180009282594974618980021621163037989247901106508257414514187962209356325857887950302223210328647697948055097831009797738621154319922212951316644741457327450027692469090867369598*x^13+19088859498864751331345860430721481446264521641744903691362655800372349704990331481604867685549645823662978708926030541236042951546550966879612333115396628902751820387999904934599090760358886795430484312266737008386396041896213971568537362589851823779617430207078749426022658232278071527361264481524611089324107754031784837527081637219350016169914382322455035364613935875393571579561406195287363628553419822536428710010055920488818415526206620047517917895155637033562338042275152771173240104076821411360366799172066699958543868065037999702280159896040588223787643434915579465270491451613199185385049196526456210057933748521047167538262357063585093474544299142560492581751607753970282443057122762426600024763892341448332834018680513343674283251162037067303651651086278409136799357849452879897251530675098741236156640469815784447341282424004221641529187217962536022784563163918511210513153785881467158114512281634789894107114727680109/1065251949862265210652272168173737818079766721346468257641443718061859284713552989844906490468697970704260354385942770501963752716246560268096404341620710437180320102068867595249622148454161093872630458316518403289892619139824517994044024353008536478232894586782847419798979018027431056208639674386251103626163015981459384789784174478910431605899149983310885221669215972951766888121719675680190645941913411989164076151110420514166420314361846423768212858859415425544801116769267331360560415738289694748722700573766253399516987277520202780478546031137914946578750226358066251007497075280096021780532617022221262221907803325793940863884822208881847639005876332876967569358870834022202605750259848503965323785903994429254375884584100184850130449680009157634393336427531658206326673873721012663082633702169419138171395987403118775285962650100741070109549232649351699277003265912873718106640737650438881580485775816675897489696955789866*x^12-127688837609696458957114129756229560761957972259253280819996356067917173759565012901801561924391178368568146719627801670086606489531437386224078360185442651606983719684283163392876990522586784115059551865746707609765679864632874671595399416688286257053075135779925094175440416074968471245768830366824397599424731191899057489251725430472639828977416853808059394673266682604308077331301860791811476274942568803494246399367164616630866928631772760003749091917886558963952047434319195736393271420111064778587861639539510320744497931007588784407172972776901653630399291814617861650330433072614870207218474263898528043868017109168847074788133295715653324601280999334137328493510780499508083274179117783232296907665583279993325725716354393277745170409349317876378784871325009748734263290375761397883657890413900529632709410443413043575189427898559331856967020187201932742096158736566419271039506140015010172468151681141071869870925420155369/6391511699173591263913633009042426908478600328078809545848662308371155708281317939069438942812187824225562126315656623011782516297479361608578426049724262623081920612413205571497732890724966563235782749899110419739355714838947107964264146118051218869397367520697084518793874108164586337251838046317506621756978095888756308738705046873462589635394899899865311330015295837710601328730318054081143875651480471934984456906662523084998521886171078542609277153156492553268806700615603988163362494429738168492336203442597520397101923665121216682871276186827489679472501358148397506044982451680576130683195702133327573331446819954763645183308933253291085834035257997261805416153225004133215634501559091023791942715423966575526255307504601109100782698080054945806360018565189949237960043242326075978495802213016514829028375924418712651715775900604446420657295395896110195662019595477242308639844425902633289482914654900055384938181734739196*x^11+1941963889284143967630503461641384772639246155223080045213834947146248802376220874585881737054605033501866020180580996666713652795880193379326169002867732637532200447194534846339338413543240801939477478241099683412186213038204202290858666453453417846899586996164402928265510496311234255565224399736489137714957014062613618467711330149177700905620590617841256796029108309659216987574764436490494934048714919670190684046029243176314833939438755957046700890497104507387346236050782952954331963365980088907386124713398155694605596359102946980291494749083679360161061519037964676115079433007443504537411864172301459893087256329861985994656612965817883540871319790509064913361633903111901088284675188114992527367188875256164648035419067179258498467050438971237757123876227876902374176109894916835963212462977715488403210262610643862278435267351697867431486692646214503482828458653994117921039913207766285237066798400775441411774079610837/177541991643710868442045361362289636346627786891078042940240619676976547452258831640817748411449661784043392397657128416993958786041093378016067390270118406196720017011477932541603691409026848978771743052753067214982103189970752999007337392168089413038815764463807903299829836337905176034773279064375183937693835996909897464964029079818405267649858330551814203611535995491961148020286612613365107656985568664860679358518403419027736719060307737294702143143235904257466852794877888560093402623048282458120450095627708899919497879586700463413091005189652491096458371059677708501249512546682670296755436170370210370317967220965656810647470368146974606500979388812827928226478472337033767625043308083994220630983999071542395980764016697475021741613334859605732222737921943034387778978953502110513772283694903189695232664567186462547660441683456845018258205441558616546167210985478953017773456275073146930080962636112649581616159298311*x^10-8863297827898165839415750496524113595646716762121322844115735229732707054220168863570410233048901583522983420448394277638284549018035513758104914498710641607628947697242244219841860993879788358381735454419316105861594264938271360192839234405577377200072500528683390799739067094807744149646139901716484318789624752809347475833611242793680607929117314808486761679788190886930919706651326101755691947512243418216460237241769969836429891299366314558409971924025105037908119564861578530568458046073973392717591352587749276788404403969612641258746844907150027624513801294297807549646148499291417732004938891897241268904655286649579390754923163271693343760744341965406109121853934340673760793157027856466007930099451628400810185712964495614693463085689905135333950374874743558356849483930901197948196695521171654728867080261994068527012182974920030328883744764966738189985551194012023576203112120540148697524837372858043563451876509542849/3195755849586795631956816504521213454239300164039404772924331154185577854140658969534719471406093912112781063157828311505891258148739680804289213024862131311540960306206602785748866445362483281617891374949555209869677857419473553982132073059025609434698683760348542259396937054082293168625919023158753310878489047944378154369352523436731294817697449949932655665007647918855300664365159027040571937825740235967492228453331261542499260943085539271304638576578246276634403350307801994081681247214869084246168101721298760198550961832560608341435638093413744839736250679074198753022491225840288065341597851066663786665723409977381822591654466626645542917017628998630902708076612502066607817250779545511895971357711983287763127653752300554550391349040027472903180009282594974618980021621163037989247901106508257414514187962209356325857887950302223210328647697948055097831009797738621154319922212951316644741457327450027692469090867369598*x^9+2017798632508126214178032687554207106376957218619840832956662086046164665731840663616010195125899727795939076982732552766119787016500832211715921717230052496681979577432852310401087868502196643627732719648105718026988556567683519630485815400374479891004302010335606831102703848328584097945978508243431022893640963113656761657600197417501485533198377194139684052176343994472985299657953300469363286556184526802586584214755307697158247107887873091236237632599123600602905959806309348139033950376959229535155791803352079139955123963320105932227644780215619966766055108655288741020886209290486474711298006297607280189057416424593467478571219372613281308689321078436254551057742499063473864232694061267319983756694814398288262834174390168011042951364931686132193005284966871663010432330119034962795839890899090501481880553750048136836870884603174737258837536327019963547476613035420193242235958864072191310211266838717111661997427211841/12783023398347182527827266018084853816957200656157619091697324616742311416562635878138877885624375648451124252631313246023565032594958723217156852099448525246163841224826411142995465781449933126471565499798220839478711429677894215928528292236102437738794735041394169037587748216329172674503676092635013243513956191777512617477410093746925179270789799799730622660030591675421202657460636108162287751302960943869968913813325046169997043772342157085218554306312985106537613401231207976326724988859476336984672406885195040794203847330242433365742552373654979358945002716296795012089964903361152261366391404266655146662893639909527290366617866506582171668070515994523610832306450008266431269003118182047583885430847933151052510615009202218201565396160109891612720037130379898475920086484652151956991604426033029658056751848837425303431551801208892841314590791792220391324039190954484617279688851805266578965829309800110769876363469478392*x^8+595653463870329564049793978610653077784924147310081049725886229514496074424431896371139535290512513543370421669991943879022295484566837982193741714293063648577558130603631634766521328149129569969823197271545558633437311107596551672056665506079114364599202039865730405948002218769139583348447586421596752286092282439204649127363793862275710130284296695116082940485912870421340555598970364233037216088883415900477944075155274644931796851988347845481689494432787436457416213309975377477034435315885301330073984386960225656990818706334595431458471582550550165189482320607945492496296417100187628303765229872504055798768101834332864953805589825320224343693907336414200688255911370715097612333973794836212429385145521765825313810064172829130430532871221590834385381629229656091998869097712301634818490602700217107948854487937370243140870821241350717775059492175130737668904369695266161667460527553083982270988490551570900042454610585889/12783023398347182527827266018084853816957200656157619091697324616742311416562635878138877885624375648451124252631313246023565032594958723217156852099448525246163841224826411142995465781449933126471565499798220839478711429677894215928528292236102437738794735041394169037587748216329172674503676092635013243513956191777512617477410093746925179270789799799730622660030591675421202657460636108162287751302960943869968913813325046169997043772342157085218554306312985106537613401231207976326724988859476336984672406885195040794203847330242433365742552373654979358945002716296795012089964903361152261366391404266655146662893639909527290366617866506582171668070515994523610832306450008266431269003118182047583885430847933151052510615009202218201565396160109891612720037130379898475920086484652151956991604426033029658056751848837425303431551801208892841314590791792220391324039190954484617279688851805266578965829309800110769876363469478392*x^7-15113570599033390421079877152704282575760402634458053122854896745489277827307511104729555317925906225568214914439058228407909604233709303373800635755523163622556864164238666772567187619354483299953911709839860063588020162857990784248028866643232820765874877631054265552390768506568101602491000432124326227024341745780450739624272135251182271133507810838226637332261885858935760923125210938994349370924860536080811884391229918127119531006177386365479201266087848843332916814370814507988299037716701840225002363896766748196913932600780960329893902502167652386550281812383391521738502785942278676540705757260537410521405647255640494560579216704794939121721257870245415144651904709474211768371408204914862883986252875760943819790296200235921138992713190368600609580449924683146430563973244161071950255162230256773426228399168919888429747422610165410976294531879556935995391906949049683251359274465900646212494068580346654890616742327/25566046796694365055654532036169707633914401312315238183394649233484622833125271756277755771248751296902248505262626492047130065189917446434313704198897050492327682449652822285990931562899866252943130999596441678957422859355788431857056584472204875477589470082788338075175496432658345349007352185270026487027912383555025234954820187493850358541579599599461245320061183350842405314921272216324575502605921887739937827626650092339994087544684314170437108612625970213075226802462415952653449977718952673969344813770390081588407694660484866731485104747309958717890005432593590024179929806722304522732782808533310293325787279819054580733235733013164343336141031989047221664612900016532862538006236364095167770861695866302105021230018404436403130792320219783225440074260759796951840172969304303913983208852066059316113503697674850606863103602417785682629181583584440782648078381908969234559377703610533157931658619600221539752726938956784*x^6-56606911212746288531797425095670805062399424421101677717862600827392887966086570498590673119613746469165156337523381795636321677036991477302420753674709713686811882568078016975400881624969306258459062007649906773777809876859663876646222545569178638387083155806346202130570988684784830435390865363436508319229238598519437586054312503598853928438972636264615238650707643552964679259318243634317570183872115416681752259271751432389553718574295517207917784228757458885377537383478835886996256222286223854172678118278099547239528535908757605400918412542872093301940268914810937904361836991602742563582312675452630601354931494058266771375234065791092815667038632389781434772470040614489288147052306960907419599693648698532033457556243783702691074860973568369668485091260383950009098762596509973546964151952489551510210947116627078116642234793376887344063164400839769932275480710548974537201716359604788112690110055153211687060319915667/25566046796694365055654532036169707633914401312315238183394649233484622833125271756277755771248751296902248505262626492047130065189917446434313704198897050492327682449652822285990931562899866252943130999596441678957422859355788431857056584472204875477589470082788338075175496432658345349007352185270026487027912383555025234954820187493850358541579599599461245320061183350842405314921272216324575502605921887739937827626650092339994087544684314170437108612625970213075226802462415952653449977718952673969344813770390081588407694660484866731485104747309958717890005432593590024179929806722304522732782808533310293325787279819054580733235733013164343336141031989047221664612900016532862538006236364095167770861695866302105021230018404436403130792320219783225440074260759796951840172969304303913983208852066059316113503697674850606863103602417785682629181583584440782648078381908969234559377703610533157931658619600221539752726938956784*x^5+8803574970613871156806085396512138961742521948396413545070976399600915984183390805096731313217646981222548657773275592950616488668094770447693809833164459043946592009996136155728311094386907899766270966922695038949490311577603551489122618956774441280490375954836897874880872800831317477259323488993074897412948399841956182103363590355763668471507912443956969097316815558683861211173548132219642059999985419005273573000030449164050583320511714605312903276113074336198985650814714729654266427222607355408552351971127995723711943667875256201812876969068878200785868067258284670407922968682007482594553643052049155554750878922972932169341172726102387357444748432711229584365031020816215817387958789462262033872746673386146274342628377930132499351532652360977700457249013199924702013517630294342824985973844030539327838892887509452469632329879859377436506301311966132764081878323235415242489663285064434254301628330944024796246782645/25566046796694365055654532036169707633914401312315238183394649233484622833125271756277755771248751296902248505262626492047130065189917446434313704198897050492327682449652822285990931562899866252943130999596441678957422859355788431857056584472204875477589470082788338075175496432658345349007352185270026487027912383555025234954820187493850358541579599599461245320061183350842405314921272216324575502605921887739937827626650092339994087544684314170437108612625970213075226802462415952653449977718952673969344813770390081588407694660484866731485104747309958717890005432593590024179929806722304522732782808533310293325787279819054580733235733013164343336141031989047221664612900016532862538006236364095167770861695866302105021230018404436403130792320219783225440074260759796951840172969304303913983208852066059316113503697674850606863103602417785682629181583584440782648078381908969234559377703610533157931658619600221539752726938956784*x^4-523859084082833471446711755599121052886811016364975130659544060359420880174405546029952820794428450698789941159230333192978458494119123793478183362395347411263910209528686607499619732076210935923583757530528475415340759837176163831540648474842441088111430598419604346899579186230546208967364447721656454914767406049990213818512260948866882128853891871133892169918212832229057031510780243573302325692630372815883421975596513331009467248542883004381175675544983224650496679943101389848155364127861671314139401868335830005933182296640353260635533021407833519995789902759067978323853832610509380765976726389069758315717268633025536104645794437969501284514833324641003339055262908646594490675898481723072173169073269959496697492841280565500876977601579793290422081302241207973528760098915143648721380740535972297119460582597942660098036955825437773842971660604713909242648770501670101799996143752912217696962275386368069113806310933/25566046796694365055654532036169707633914401312315238183394649233484622833125271756277755771248751296902248505262626492047130065189917446434313704198897050492327682449652822285990931562899866252943130999596441678957422859355788431857056584472204875477589470082788338075175496432658345349007352185270026487027912383555025234954820187493850358541579599599461245320061183350842405314921272216324575502605921887739937827626650092339994087544684314170437108612625970213075226802462415952653449977718952673969344813770390081588407694660484866731485104747309958717890005432593590024179929806722304522732782808533310293325787279819054580733235733013164343336141031989047221664612900016532862538006236364095167770861695866302105021230018404436403130792320219783225440074260759796951840172969304303913983208852066059316113503697674850606863103602417785682629181583584440782648078381908969234559377703610533157931658619600221539752726938956784*x^3+2507277613118701025793992364166478343634113591260892474295326766388926595401380659553418488612372800473078429284383414164100295497618696922175584194648519640315288543669474665647481253042089841838880845698663503017597568567494036511285649062160850714939388491186949845790680376696816908809272981412907183537044694180946810281215322367828144494392069154586949731736984686662811664798321227156168742191864566896432033615316362529844704143667580907339601101101040983407725340793380960622046484034595588591168465069176540166697625520589666927661660285415510869031443183270437121086747446353056448389264226941586709914236711688346438937447603056458249768319677721039404318822571940087776493501534291441156924207226385372828419997653921508823109486892013281164698869726954506626852453903751862417478762888542286370388085783793727357089951716036021380037300853575906423073257325966464463919011630179868083502189793561658823882854823/5681343732598747790145451563593268363092089180514497374087699829663249518472282612506167949166389177089388556725028109343806681153314988096514156488643788998295040544367293841331318125088859167320695777688098150879427302079064095968234796549378861217242104462841852905594554762812965633112744930060005886006202751901116718878848930554188968564795466577658054515569151855742756736649171603627683445023538197275541739472588909408887575009929847593430468580583548936238939289436092433922988883937545038659854403060086684797423932146774414829218912166068879715086667873909686672039984401493845449496173957451846731850174951070901017940719051780703187408031340442010493703247311114785080564001385858687815060191487970289356671384448534319200695731626715507383431127613502177100408927326512067536440713078236902070247445266149966801525134133870619040584262574129875729477350751535326496568750600802340701762590804355604786611717097545952*x^2+409625955662068882951029126793688739518090138239218488984796795645801325262353406586076439055165056320023643100727785301142632216544301080743235707086824485890205950529700657617438269917459707919268974737411575302005751244657214481075183329087253965790410699412397427442839741206848483871370551438808586427029387351271518650463772184256590372936207478553171485915519400489218737299828282527927029698794411869349982447984333764576483854239683590209335608900236726346302994114690056427772581682505305971250477006390651418491364024408115184552516886617401858022820021648328348447629622760279509245058592997481694825738991388860444669425663371096552711454623191875274037228193231324209339530305072938805229134963657645497492583194974100090696050921013395443204011245764738501052755929663789410609492539391491688417079601608018345617616844409309669918907009896517735188492371103865855756475811783862809885417127411425999146175/25566046796694365055654532036169707633914401312315238183394649233484622833125271756277755771248751296902248505262626492047130065189917446434313704198897050492327682449652822285990931562899866252943130999596441678957422859355788431857056584472204875477589470082788338075175496432658345349007352185270026487027912383555025234954820187493850358541579599599461245320061183350842405314921272216324575502605921887739937827626650092339994087544684314170437108612625970213075226802462415952653449977718952673969344813770390081588407694660484866731485104747309958717890005432593590024179929806722304522732782808533310293325787279819054580733235733013164343336141031989047221664612900016532862538006236364095167770861695866302105021230018404436403130792320219783225440074260759796951840172969304303913983208852066059316113503697674850606863103602417785682629181583584440782648078381908969234559377703610533157931658619600221539752726938956784*x+19274602981612147290159524985559484093130831751480756525782715054667194973369495232408312165313759674110576759872392612089012272923859625516884268120491350321412487913144106351173483928355210063578761326082759699790669852993610922334255512904908344034497486576749204467479440080193445816812437124815705534871107288254095868559730608571611775333291508638854525168655723328657110979842065373668113720199606612577706540055748716804695554224139209569128003744375141059759616450648545383218233710479963101078863006113802889357950673977857921892481030024186104599766895886493039433820102404772715112824244120718747330555481069366856972350416806635004205386220265273799023113455715583543586661235789661857624566216488236144677299497354093058902257519792639035715396313400079080186425228931237501312897851917238249279942091650204339882709384865082513445071486731865811778705191906577495950612446972346017024882968602859856464/1597877924793397815978408252260606727119650082019702386462165577092788927070329484767359735703046956056390531578914155752945629074369840402144606512431065655770480153103301392874433222681241640808945687474777604934838928709736776991066036529512804717349341880174271129698468527041146584312959511579376655439244523972189077184676261718365647408848724974966327832503823959427650332182579513520285968912870117983746114226665630771249630471542769635652319288289123138317201675153900997040840623607434542123084050860649380099275480916280304170717819046706872419868125339537099376511245612920144032670798925533331893332861704988690911295827233313322771458508814499315451354038306251033303908625389772755947985678855991643881563826876150277275195674520013736451590004641297487309490010810581518994623950553254128707257093981104678162928943975151111605164323848974027548915504898869310577159961106475658322370728663725013846234545433684799:

fsolve(P,complex);

Greetings to all,

I want to make a "circular" list but I cannot find a way.

To be more precise, let K=[x1,x2,x3,x4], is any way to set K[0]:=K[4] and K[5]:=K[1]?

 

Thanx a lot,

Giorgos

I need to show that the following expression,
a^3b-a^3c+a^3z+a^3x+a^3y-a^2bx+a^2by+a^2cx-a^2cy-a^2zx+a^2zy-a^2x^2+a^2y^2-abcz-abcx-aczx-acx^2+b^2c^2+2bc^2x+c^2x^2-b^2c-2bcx-cx^2,

is positive

given that:

1. a,b,c,x,y,z are positive real numbers

2. a>b+x

3. c<b+y

I know a priori that the expression is indeed positive, but I do not know how to show it, or how to use Maple to do it?

Specifically, how can I use Maple to **partially factorize** the expression in terms of the expressions a-b-x and c-b-y?

Thanks for any help.

First 55 56 57 58 59 60 61 Last Page 57 of 86