Maple 2015 Questions and Posts

These are Posts and Questions associated with the product, Maple 2015

 

 

PS,
PiFast43 is freely available at,

http://numbers.computation.free.fr/Constants/PiProgram/pifast.html

 

 

 

Hi all.

I am using Maple2015.

I typed in as input y=x/sqrt(1-x^2).

I hit enter.  The output is:

 y=x/sqrt(1-x^2)

I know the 2 answers are equivalent.

My question is why did Maple swap 1-x^2 to -x^2+1???

Any advice to swap it back would be greatly appreciated.

I have been trying to fit a function to experimental data. To do this i was using

.

The data is of the type

.

When I use initialvalues, I get a result, that fits the data well, but is clearly not the desired minimum. Maple delivers g always bigger than 10000 which is nowhere near -7, where it has to be for physical reasons. When using parameterranges I get the error

Warning, no iterations performed as initial point satisfies first-order conditions.

He stopps computing and simply prints out my initialvalues or the first value that is in the parameterrange with a huge RSS.

How can I use initialvalues and parameterranges together for my data?


restart; with(Physics); with(Tetrads); with(PDETools)

0, "%1 is not a command in the %2 package", Tetrads, Physics

(1)

coords := zetabar, zeta, v, u

zetabar, zeta, v, u

(2)

X = [coords]

X = [zetabar, zeta, v, u]

(3)

ds2 := Physics:-`*`(Physics:-`*`(2, dzeta), dzetabar)+Physics:-`*`(Physics:-`*`(2, du), dv)+Physics:-`*`(Physics:-`*`(2, H(coords)), Physics:-`^`(du+Physics:-`*`(Ybar(coords), dzeta)+Physics:-`*`(Y(coords), dzetabar)-Physics:-`*`(Physics:-`*`(Y(coords), Ybar(coords)), dv), 2))

2*dzeta*dzetabar+2*du*dv+2*H(zetabar, zeta, v, u)*(du+Ybar(zetabar, zeta, v, u)*dzeta+Y(zetabar, zeta, v, u)*dzetabar-Y(zetabar, zeta, v, u)*Ybar(zetabar, zeta, v, u)*dv)^2

(4)

PDEtools:-declare(ds2)

Ybar(zetabar, zeta, v, u)*`will now be displayed as`*Ybar

(5)

vierbien := Matrix([[1, 0, -Ybar(coords), 0], [0, 1, -Y(coords), 0], [Physics:-`*`(H(coords), Y(coords)), Physics:-`*`(H(coords), Ybar(coords)), 1-Physics:-`*`(Physics:-`*`(H(coords), Y(coords)), Ybar(coords)), H(coords)], [Y(coords), Ybar(coords), -Physics:-`*`(Y(coords), Ybar(coords)), 1]])

vierbien := Matrix(4, 4, {(1, 1) = 1, (1, 2) = 0, (1, 3) = -Ybar(zetabar, Zeta, v, u), (1, 4) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = -Y(zetabar, Zeta, v, u), (2, 4) = 0, (3, 1) = H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u), (3, 2) = H(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 3) = 1-H(zetabar, Zeta, v, u)*Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (3, 4) = H(zetabar, Zeta, v, u), (4, 1) = Y(zetabar, Zeta, v, u), (4, 2) = Ybar(zetabar, Zeta, v, u), (4, 3) = -Y(zetabar, Zeta, v, u)*Ybar(zetabar, Zeta, v, u), (4, 4) = 1})

(6)

``

Physics:-Setup(coordinatesystem = (X = [zetabar, zeta, v, u]), metric = ds2, tetrad = vierbien, mathematicalnotation = true, automaticsimplification = true, signature = "+++-")

RicciT := proc (a, b) options operator, arrow; Physics:-SumOverRepeatedIndices(Ricci[mu, nu]*e_[a, `~mu`]*e_[b, `~nu`]) end proc

proc (a, b) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-`*`(Physics:-Ricci[mu, nu], Physics:-Tetrads:-e_[a, `~mu`]), Physics:-Tetrads:-e_[b, `~nu`])) end proc

(7)

SlashD := proc (f, a) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-D_[mu](f)*e_[a, `~mu`]) end proc

proc (f, a) options operator, arrow; Physics:-SumOverRepeatedIndices(Physics:-`*`(Physics:-D_[mu](f), Physics:-Tetrads:-e_[a, `~mu`])) end proc

(8)

SlashD(H(X), 4) = H(X)[4]

(diff(H(X), zetabar))*Ybar(X)+(diff(H(X), zeta))*Y(X)+diff(H(X), v)-(diff(H(X), u))*Y(X)*Ybar(X) = H(X)[4]

(9)

Gamma := proc (a, b, c) options operator, arrow; -gamma_[a, b, c] end proc

proc (a, b, c) options operator, arrow; Physics:-`*`(Physics:-Tetrads:-gamma_[a, b, c], -1) end proc

(10)

Gamma(1, 4, 4) = 0

-(diff(Ybar(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Ybar(X), zeta))+Ybar(X)*(diff(Ybar(X), zetabar))+diff(Ybar(X), v) = 0

(11)

``

Gamma(2, 4, 4) = 0

-(diff(Y(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Y(X), zeta))+(diff(Y(X), zetabar))*Ybar(X)+diff(Y(X), v) = 0

(12)

``

Gamma(3, 4, 4) = 0

0 = 0

(13)

``

Gamma(4, 4, 4) = 0

0 = 0

(14)

Gamma(4, 1, 1) = 0

-(diff(Ybar(X), zeta))+(diff(Ybar(X), u))*Ybar(X) = 0

(15)

``

Gamma(4, 2, 2) = 0

-(diff(Y(X), zetabar))+(diff(Y(X), u))*Y(X) = 0

(16)

NULL

shearconditions := {-(diff(Y(X), zetabar))+(diff(Y(X), u))*Y(X) = 0, -(diff(Ybar(X), zeta))+(diff(Ybar(X), u))*Ybar(X) = 0, -(diff(Y(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Y(X), zeta))+(diff(Y(X), zetabar))*Ybar(X)+diff(Y(X), v) = 0, -(diff(Ybar(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Ybar(X), zeta))+Ybar(X)*(diff(Ybar(X), zetabar))+diff(Ybar(X), v) = 0}

{-(diff(Y(X), zetabar))+(diff(Y(X), u))*Y(X) = 0, -(diff(Ybar(X), zeta))+(diff(Ybar(X), u))*Ybar(X) = 0, -(diff(Y(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Y(X), zeta))+(diff(Y(X), zetabar))*Ybar(X)+diff(Y(X), v) = 0, -(diff(Ybar(X), u))*Y(X)*Ybar(X)+Y(X)*(diff(Ybar(X), zeta))+Ybar(X)*(diff(Ybar(X), zetabar))+diff(Ybar(X), v) = 0}

(17)

simplify(RicciT(1, 2), shearconditions) = 0

H(X)*(diff(diff(Y(X), zeta), zetabar))*Ybar(X)-H(X)*Ybar(X)*Y(X)*(diff(diff(Ybar(X), u), zetabar))-H(X)*Ybar(X)^2*(diff(diff(Y(X), u), zetabar))-H(X)*Y(X)^2*(diff(diff(Ybar(X), u), zeta))-2*H(X)*Y(X)*Ybar(X)*(diff(diff(Y(X), u), zeta))+H(X)*Y(X)^2*Ybar(X)*(diff(diff(Ybar(X), u), u))-H(X)*Y(X)*(diff(diff(Ybar(X), u), v))+H(X)*Y(X)*Ybar(X)^2*(diff(diff(Y(X), u), u))-H(X)*(diff(diff(Y(X), u), v))*Ybar(X)+H(X)*(diff(Ybar(X), zetabar))^2+(-3*H(X)*Y(X)*(diff(Ybar(X), u))-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Ybar(X), zetabar))+H(X)*(diff(Y(X), zeta))^2+(-4*H(X)*(diff(Y(X), u))*Ybar(X)-(diff(H(X), u))*Y(X)*Ybar(X)+(diff(H(X), zeta))*Y(X)+(diff(H(X), zetabar))*Ybar(X)+diff(H(X), v))*(diff(Y(X), zeta))+2*H(X)*Y(X)^2*(diff(Ybar(X), u))^2-Y(X)*((diff(H(X), zetabar))*Ybar(X)+(diff(H(X), zeta))*Y(X)+diff(H(X), v)-(diff(H(X), u))*Y(X)*Ybar(X))*(diff(Ybar(X), u))+2*(H(X)*(diff(Y(X), u))*Ybar(X)+(1/2)*(diff(H(X), u))*Y(X)*Ybar(X)-(1/2)*(diff(H(X), zeta))*Y(X)-(1/2)*(diff(H(X), zetabar))*Ybar(X)-(1/2)*(diff(H(X), v)))*(diff(Y(X), u))*Ybar(X) = 0

(18)

0 = 0

0 = 0

(19)

The values in the paraenthesis  should substitute H[4]. This sequence works in Maple 18 but not in Maple 2015

 

NULL


Download Question_algsubs_3.27.15.mw

Hi

I'm trying to use the command: DocumentTools[Retrieve](path,label), but i recieve the message "unable to retrieve label reference" no mather what i do. When i use the GUI: Insert - reference and get the value it works fine, but in that way I can't assign the value to a variable in the document.

here is an example:

The document i want to retrieve a value from:

restart;

a := 5;

#a gets the label (1)

 

The document i want to retrieve the value to:

restart;
with(DocumentTools);

path := FileTools:-JoinPath(["test.mw"], base = worksheetdir); = "C:\Users\Nicolai\CloudStation\Nicolai\Skole stof\Sem 7\test.mw"

 

Retrieve(path, "());
Retrieve(path, "(1)");
Retrieve(path, "a");

#None of the above works

 

Is it even possible to do such thing?

with best regards

Nicolai

Maplesim 7.0(1) installer looks for Maple 18 installation.  Will Maplesim work with Maple 2015?

If not, what is the expected date of making both products compatible?

Regards,

G

Hello everyone. I am trying to make a position time graph of a charged particle in an gravitational and electric field. This is just for an application of Maple to Lagrangian mechanics. I have set up my Lagrangian, did the Euler-Lagrange equation, and solved the differential equation. When I go to plot it, just the axes show up and I dont have a line. I have followed other examples of Lagrangian mechanics in Maple and its still not working. Here is the code for the odeplot:

Eq7:=dsolve({Eq6,initial},{q(t)},numeric,output=listprocedure)

odeplot(Eq7,t=0..10)

Eq6 is the Euler-Lagrange equation for my system, initial is the initial values, and q(t) is the position of the particle.

Any suggestions will help.

 

 

First 13 14 15 16 17 18 19 Last Page 15 of 71