Maple 2015 Questions and Posts

These are Posts and Questions associated with the product, Maple 2015

hi.

how i can solve two equation with respect to parameter sigma1

SOLL.mw

restart; pprime11 := -16395.36603*q1+5.811117425*q1*sigma1^2+3526.724044*p1-1.250000000*p1*sigma1^2+4.999870968*10^11*p1^3+4.999870970*10^11*p1*q1^2+7.967307034*10^14*p1^2*q1+4.999870966*10^12*sigma1*p1^2*q1-2.655769012*10^14*q1^3+4.999870968*10^12*sigma1*q1^3-17633.62022*q1*sigma1+6.250000000*q1*sigma1^3

qprime11 := 2.655769012*10^14*p1^3-7.967307034*10^14*p1*q1^2+4.999870970*10^11*p1^2*q1-4.999870968*10^12*sigma1*p1^3-4.999870966*10^12*p1*sigma1*q1^2+3526.724044*q1-1.250000000*q1*sigma1^2+16395.36603*p1-5.811117425*p1*sigma1^2+4.999870968*10^11*q1^3+17633.62022*p1*sigma1-6.250000000*p1*sigma1^3:

-50 < sigma1 and sigma1 < 50:

sigma1 <> 53.11665685, -53.11665685:

SOLL := solve({pprime11, qprime11}, real)

Warning,  computation interrupted

 

``

 

Download SOLL.mw

Hello,

does anyone know a way to combine two plots in one where one is created with ScatterPlot3D (Package:Statistics) and the other one with plot3D (Package:plots)?

 

Normally you would write something like this:

but that only works if the plots are from the same package...

Hello dear!

Hope everyone fine, I am facing to solve the attached problem please find and fix it. I am waiting your kind response. 

naveed.mw

I have entered three functions into Maple and I would like to create a set of all possible two-function and three-function compositions involving the three functions. For instance, for my three functions f(x), g(x) and h(x), the set would contain f(g(x)), g(f(x)), f(g(h(x))), f(f(f(x))), etc. 

I'm also looking for a method that will be generalisable to larger numbers of initial functions than just three.

I have used solve to find the solution to an equation that has two solutions, and I want to give each solution a label so that I can use each individually in subsequent manipulations. How do I label each solution separately?

Hello people in mapleprimes,

 

I cannot obtain a proper result from the following code.

a:=int(((beta/beta[1,2])^(-theta/(1-theta))-kappa[1]^(-theta/(1-theta)))*m*beta^(m-1),beta=0 .. kappa[1]*beta[1,2]);

 

Please tell me if you know how to have maple calculate it.

 

Thanks in advance.

 

taro

Hello Dear!

I want to solve the system of linear equation but facing some problem please see the attachmen. I am waiting your positive response 

1_(1).mw

Hi all,

I drew a undirected graph using Maple

restart;
with(GraphTheory);
with(SpecialGraphs);
with(RandomGraphs);
G := Graph(undirected, {[{1, 2}, 4], {1, 4}, {2, 3}, {2, 5}, {3, 4}});
DrawGraph(G, style = circle);

I want to import this graph to picturebox or panel on C#, please help me!

hi

if possible to convert matlab file in to maple fie program??convert_to_maple_program.txt

thanks

 

hi...how i can gain result for solve three equations,in which term '' Root of'' dont appear?

thanks

root.mw

restart; Q1 := aa*(y-x)

aa*(y-x)

(1)

Q2 := -ll*x*z+bb*x

-ll*x*z+bb*x

(2)

 

-ll*x*z+bb*x

(3)

Q3 := -cc*z+hh*x*x+kk*y*y

hh*x^2+kk*y^2-cc*z

(4)

SOLL := solve({Q1, Q2, Q3}, {x, y, z})

{x = 0, y = 0, z = 0}, {x = RootOf((hh*ll+kk*ll)*_Z^2-bb*cc), y = RootOf((hh*ll+kk*ll)*_Z^2-bb*cc), z = bb/ll}

(5)

``

 

Download root.mw

For people new to Maple, an easy way to learn how to code may be Tutor Syntax, that is the technique of generating code by selecting everything in a Tutor dialog Maple Command window and then copying it to a current session.

The code can then be edited to tailor it to user’s needs. A problem with this technique is the copied syntax contains many single quotes (‘ ‘). The single quotes, which are usually not needed if the program in current session is short and specific, increase the difficulty when editing copied syntax. The attached file (mby2.mw) shows a method which removes the single quotes by using the SubstitueAll command in the StringTools package. One drawback: any strings inside the original syntax (e.g., “#78000E”) must be removed before the syntax can be converted to a string.

Is there a better way to generate code from Tutor dialog so it can be edited (without single quotes) in user’s current session?

mby2.mw

hi.please help me for remove error'' 

Error, illegal use of an object as a name''

 

thanks

PLATE.mw

   

Parse:-ConvertTo1D, "first argument to _Inert_ASSIGN must be assignable"

Error, illegal use of an object as a name

"restart:Digits :=15: beta:=10:alpha:=100: xi:=.5: upsilon:=0.2841945289:n:=3: aa:=1:b:=1:N_x:=0.4:N_y:=0.4:N_xy:=0: hl2:=1:mu:=65.8e9:E:=169e9: delta0:=1:delta1:=1: mus:=3:D1:=2;h:=1: lambda:=0.1: D2:=5:A1:=-2:A2:=-2:A3:=-6:A4:=7:A5:=7:A6:=7:A7:=7:A8:=8:A9:=7:A10:=7:A11:=1: A12:=1:tau:=4.730040745:t:=0: g2:=sin(theta):g3:=cos(theta):g1:=cos(theta):a:=0.0:with(Student[Calculus1]): a1:=evalf((A1*ApproximateInt(g3^2,theta=a..1,method=simpson)  ) ) : a2:= evalf(A2*ApproximateInt(g3*((&DifferentialD;)^2)/((&DifferentialD;theta)^2)g3,theta=a..1,method=simpson)): a3:=evalf(A3*ApproximateInt(g3*g3,theta=a..1,method=simpson)) : a4:=evalf(A4*ApproximateInt(g3*g3,theta=a..1,method=simpson)) :a5:=evalf(A5*ApproximateInt(g3^2,theta=a..1,method=simpson)) : a6:=evalf(A6*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;theta)^2)g3*g3,theta=a..1,method=simpson)) :a7:=evalf(A7*ApproximateInt(g3*g3,theta=a..1,method=simpson)): a8:=evalf(A8*ApproximateInt(g3^2,theta=a..1,method=simpson)):a9:=evalf(ApproximateInt(A9*(g3*g3 )     ,theta=a..1,method=simpson)) :a10:=evalf(A10*ApproximateInt(g3*g3,theta=a..1,method=simpson)):a11:=evalf(ApproximateInt(1,theta=a..1,method=simpson)):a12:=evalf(ApproximateInt(1*(1-1/2 (1)),theta=a..1,method=simpson)):dsys3 := { f3(x)*(a1)+ f3(x)*(a2)  +((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x)*(a3) +f3(x)*a4+ f3(x)*(a5) +((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x)*(a6) +f3(x)*a7= ((&DifferentialD;)^2)/((&DifferentialD;x)^2) f3(x) *(a8)   + a9*(&DifferentialD;)/(&DifferentialD;x) f3(x) +f3(x)*a10+ a11+a12  , f3(1) =0,f3(0) =0 , D^(1)(f3)(1) = 0, D^(1)(f3)(0)=0,D^(3)(f3)(1) = 0, D^(3)(f3)(0)=0}    :dsol5 := dsolve(dsys3, 'maxmesh'=2024, numeric,abserr=.0001, range=0..1, output=listprocedure):fy3:= eval(f3(x),dsol5):with(CurveFitting):fy33:=PolynomialInterpolation([[0,fy3(0)],[.1,fy3(0.1)],[.2,fy3(0.2)],[0.3,fy3(0.3)],[.4,fy3(0.4)],[.5,fy3(0.5)],[0.6,fy3(0.6)],[0.7,fy3(0.7)],[0.8,fy3(0.8)],[0.9,fy3(0.9)],[1,fy3(1)]],x): d1:=A1*ApproximateInt(((&DifferentialD;)^6)/((&DifferentialD;x)^6)fy33*fy33,x=a..1,method=simpson)   :d2:= A2*ApproximateInt(((&DifferentialD;)^4)/((&DifferentialD;x)^4)fy33*fy33 ,x=a..1,method=simpson)   :d3:=A3*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson): d4:= A4*ApproximateInt(fy33*fy33,x=a..1,method=simpson):d5:=A5*ApproximateInt(((&DifferentialD;)^4)/((&DifferentialD;x)^4)fy33*fy33,x=a..1,method=simpson)  : d6:=A6*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson)    :d7:=A7*ApproximateInt(fy33*fy33,x=a..1,method=simpson)  :d8:=A8*ApproximateInt(((&DifferentialD;)^2)/((&DifferentialD;x)^2)fy33*fy33,x=a..1,method=simpson)      :d9:=ApproximateInt(A9*(((&DifferentialD;)^1)/((&DifferentialD;x)^1)fy33*fy33 )   ,x=a..1,method=simpson) :d10:=A10*ApproximateInt(fy33*fy33,x=a..1,method=simpson)    :d11:=evalf(ApproximateInt(1,theta=a..1,method=simpson)):d12:=evalf(ApproximateInt(1*(1-1/2 (1)),theta=a..1,method=simpson))  : d sys4 := { h3(theta)*(d1)+((&DifferentialD;)^2)/((&DifferentialD;theta)^2) h3(theta)*(d2)+((&DifferentialD;)^4)/((&DifferentialD;theta)^4) h3(theta)*(d3)+ ((&DifferentialD;)^6)/((&DifferentialD;theta)^6) h3(theta)*(d4)+h3(theta) *(d5)+ h3(theta) *(d6) +((&DifferentialD;)^4)/((&DifferentialD;theta)^4) h3(theta)*(d7)= h3(theta)*(d8)  +d9*(&DifferentialD;)/(&DifferentialD;theta) h3(theta)  +((&DifferentialD;)^2)/((&DifferentialD;theta)^2) h3(theta)*(d10)  +d11+d12   ,h3(1) = 0,h3(0) = 0 , D^(1)(h3)(1) = 0, D^(1)(h3)(0)=0,D^(3)(h3)(1) = 0, D^(3)(h3)(0)=0}  :dsol6 := dsolve(dsys4, 'maxmesh'=2024, abserr=.0001, range=0..1, numeric, output=listprocedure):g33:= eval(h3(theta),dsol6):with(CurveFitting):g3:=PolynomialInterpolation([[0,g33(0)],[.1,g33(0.1)],[.2,g33(0.2)],[0.3,g33(0.3)],[.4,g33(0.4)],[.5,g33(0.5)],[0.6,g33(0.6)],[0.7,g33(0.7)],[0.8,g33(0.8)],[0.9,g33(0.9)],[1,g33(1)]],theta):"

 

 

``

 

Download PLATE.mw

This is the second of three blog posts about working with data sets in Maple.

In my previous post, I discussed how to use Maple to access a large number of data sets from Quandl, an online data aggregator. In this post, I’ll focus on exploring built-in data sets in Maple.

Data is being generated at an ever increasing rate. New data is generated every minute, adding to an expanding network of online information. Navigating through this information can be daunting. Simply preparing a tabular data set that collects information from several sources is often a difficult and time consuming effort. For example, even though the example in my previous post only required a couple of lines of Maple code to merge 540 different data sets from various sources, the effort to manually search for and select sources for data took significantly more time.

In an attempt to make the process of finding data easier, Maple’s built-in country data set collects information on country-specific variables including financial and economic data, as well as information on country codes, population, area, and more.

The built-in database for Country data can be accessed programmatically by creating a new DataSets Reference:

CountryData := DataSets:-Reference( "builtin", "country" );

This returns a Reference object, which can be further interrogated. There are several commands that are applicable to a DataSets Reference, including the following exports for the Reference object:

exports( CountryData, static );

The list of available countries in this data set is given using the following:

GetElementNames( CountryData );

The available data for each of these countries can be found using:

GetHeaders( CountryData );

There are many different data sets available for country data, 126 different variables to be exact. Similar to Maple’s DataFrame, the columns of information in the built-in data set can be accessed used the labelled name.

For example, the three-letter country codes for each country can be returned using:

CountryData[.., "3 Letter Country Code"];

The three-letter country code for Denmark is:

CountryData["Denmark", "3 Letter Country Code"];

Built-in data can also be queried in a similar manner to DataFrames. For example, to return the countries with a population density less than 3%:

pop_density := CountryData[ .., "Population Density" ]:
pop_density[ `Population Density` < 3 ];

At this time, Maple’s built-in country data collection contains 126 data sets for 185 countries. When I built the example from my first post, I knew exactly the data sets that I wanted to use and I built a script to collect these into a larger data container. Attempting a similar task using Maple’s built-in data left me with the difficult decision of choosing which data sets to use in my next example.

So rather than choose between these available options, I built a user interface that lets you quickly browse through all of Maple’s collection of built-in data.

Using a couple of tricks that I found in the pages for Programmatic Content Generation, I built the interface pictured above. (I’ll give more details on the method that I used to construct the interface in my next post.)

This interface allows you to select from a list of countries, and visualize up to three variables of the country data with a BubblePlot. Using the preassigned defaults, you can select several countries and then visualize how their overall number of internet users has changed along with their gross domestic product. The BubblePlot visualization also adds a third dimension of information by adjusting the bubble size according to the relative population compared with the other selected countries.

Now you may notice that the list of available data sets is longer than the list of available options in each of the selection boxes. In order to be able to generate BubblePlot animations, I made an arbitrary choice to filter out any of the built-in data sets that were not of type TimeSeries. This is something that could easily be changed in the code. The choice of a BubblePlot could also be updated to be any other type of Statistical visualization with some additional modifications.

You can download a copy of this application here: VisualizingCountryDataSets.mw

You can also interact with it via the MapleCloud: http://maplecloud.maplesoft.com/application.jsp?appId=5743882790764544

I’ll be following up this post with an in-depth post on how I authored the country selector interface using programmatic content generation.

First 43 44 45 46 47 48 49 Last Page 45 of 71