Maple 2016 Questions and Posts

These are Posts and Questions associated with the product, Maple 2016

Hello people in mapleprimes,

I have an expression, which apparently can be factored with (beta-1)

e1 := -(beta-1)*L*s*lambda*Omega^3+(beta-1)*L*s*g^k*epsilon*(T*lambda-T+1)*Omega^2+(beta-1)*L*s*(T+lambda-1)*Omega-(beta-1)*L*s*g^k*T*epsilon*lambda;

I want this expresson factored with (beta-1) but keeping other terms the same as

e2:=-L*s*lambda*Omega^3+L*s*g^k*epsilon*(T*lambda-T+1)*Omega^2+L*s*(T+lambda-1)*Omega-L*s*g^k*T*epsilon*lambda;

Is this possible?

I hope you will help me for this.

Thanks in advance.

taro

question_q1_11_28_2016.mw

 

 

How does one retrieve document properties of some target file.

I tried ..

with(DocumentTools):
Retrieve("c:\\Users\laptop22\Documents\Start2Test.mw", "GetDocumentProperty('all')")

however that ended in error

***************edit added****************
From the help pages

Why Apply Document Properties?

The Document Properties feature allows you to record data associated with your document, such as the author or date of creation. This data is not displayed in your document but could be read by an external processing tool.

It does say read by external processing tool, but Maple has the command Retrieve so I would think it is also possible within Maple, maybe not with Retrieve since it is specifically looking for labels.  But perhaps there is another way?

hi...why solve for this equation dos not answer?

thanks

4.mw
 

restart; dsys3 := {diff(w(x), x, x, x, x, x, x)+diff(w(x), x, x, x, x)+diff(w(x), x, x)+(1-2)*w(x) = -90, w(0) = 0, w(1) = 0, ((D@@1)(w))(0) = 0, ((D@@1)(w))(1) = 0, ((D@@2)(w))(0) = 0, ((D@@2)(w))(1) = 0}; dsol5 := dsolve(dsys3, numeric, abserr = .1, output = array([.5]))

array( 1 .. 2, 1 .. 1, [( 1, 1 ) = (array( 1 .. 7, [( 1 ) = (x), ( 2 ) = (w(x)), ( 3 ) = (diff(w(x), x)), ( 4 ) = (diff(diff(w(x), x), x)), ( 5 ) = (diff(diff(diff(w(x), x), x), x)), ( 6 ) = (diff(diff(diff(diff(w(x), x), x), x), x)), ( 7 ) = (diff(diff(diff(diff(diff(w(x), x), x), x), x), x))  ] )), ( 2, 1 ) = (array( 1 .. 1, 1 .. 7, [( 1, 7 ) = (HFloat(-1.3899459757465982e-7)), ( 1, 3 ) = (HFloat(4.5022670883498417e-8)), ( 1, 1 ) = (.5), ( 1, 6 ) = (HFloat(2.2858770405958895)), ( 1, 5 ) = (HFloat(2.6615438731474126e-8)), ( 1, 4 ) = (HFloat(-0.04747952956114616)), ( 1, 2 ) = (HFloat(0.0019672907400671725))  ] ))  ] )

(1)

"restart;w(x):=C1* (sinh(x))+C2* (cosh(x))+C3 *(sin(x))+C4 *(cos(x))+C5 *(sin(x))+C6 *(cos(x))+90"

proc (x) options operator, arrow; C1*sinh(x)+C2*cosh(x)+C3*sin(x)+C4*cos(x)+C5*sin(x)+C6*cos(x)+90 end proc

(2)

A1 := evalf(subs(x = 0, w(x)))

90.+1.*C2+1.*C4+1.*C6

(3)

A2 := evalf(subs(x = 1, w(x)))

1.175201194*C1+1.543080635*C2+.8414709848*C3+.5403023059*C4+.8414709848*C5+.5403023059*C6+90.

(4)

A3 := evalf(subs(x = 0, diff(w(x), x)))

1.*C1+1.*C3+1.*C5

(5)

A4 := evalf(subs(x = 1, diff(w(x), x)))

1.543080635*C1+1.175201194*C2+.5403023059*C3-.8414709848*C4+.5403023059*C5-.8414709848*C6

(6)

A5 := evalf(subs(x = 0, diff(w(x), x, x, x)))

1.*C1-1.*C3-1.*C5

(7)

A6 := evalf(subs(x = 1, diff(w(x), x, x, x)))

1.543080635*C1+1.175201194*C2-.5403023059*C3+.8414709848*C4-.5403023059*C5+.8414709848*C6

(8)

solve({A1, A2, A3, A4, A5, A6}, {C1, C2, C3, C4, C5, C6})

``

solve*{A5, A6, C1, C2, C3, C4, C5, C6, 1.*C2+1.*C4+1.*C6, 1.*C2*upsilon^2-1.*C4*kappa^2-1.*C6*varsigma^2, C1*sinh(upsilon)+C2*cosh(upsilon)+C3*sin(kappa)+C4*cos(kappa)+C5*sin(varsigma)+C6*cos(varsigma), C1*upsilon^2*sinh(upsilon)+C2*upsilon^2*cosh(upsilon)-1.*C3*kappa^2*sin(kappa)-1.*C4*kappa^2*cos(kappa)-1.*C5*varsigma^2*sin(varsigma)-1.*C6*varsigma^2*cos(varsigma)}

(9)

``

``

``


 

Download 4.mw

 

hi every body...

general solution of six order differential equation for example following equation

diff(w(x), x, x, x, x, x, x)+A*(diff(w(x), x, x, x, x))+B*(diff(w(x), x, x))+(-chi*omega^2+C)*w(x) = 0

is 

w := C1*sinh(upsilon*x)+C2*cosh(upsilon*x)+C3*sin(kappa*x)+C4*cos(kappa*x)+C5*sin(varsigma*x)+C6*cos(varsigma*x)

??

OR

w := C1*(cosh(upsilon*x)-sinh(upsilon*x))+C2*(cosh(upsilon*x)+sinh(upsilon*x))+C3*(cosh(kappa*x)-sinh(kappa*x))+C4*(cosh(kappa*x)+sinh(kappa*x))+C5*(cosh(varsigma*x)-sinh(varsigma*x))+C6*(cosh(varsigma*x)+sinh(varsigma*x))

or another form? is correct both of them or no??

please see maple attaced file.

please help me

thanks...

3.mw
 

restart; dsys3 := diff(w(x), x, x, x, x, x, x)+A*(diff(w(x), x, x, x, x))+B*(diff(w(x), x, x))+(-chi*omega^2+C)*w(x) = 0

diff(diff(diff(diff(diff(diff(w(x), x), x), x), x), x), x)+A*(diff(diff(diff(diff(w(x), x), x), x), x))+B*(diff(diff(w(x), x), x))+(-chi*omega^2+C)*w(x) = 0

(1)

dsol5 := dsolve(dsys3):

H := subs(36*B*A+108*chi*omega^2-108*C-8*A^3+12*sqrt(-12*A^3*chi*omega^2+81*chi^2*omega^4+54*A*B*chi*omega^2+12*A^3*C-3*A^2*B^2-162*C*chi*omega^2-54*A*B*C+12*B^3+81*C^2) = E, (4*I)*A^2*sqrt(3)-I*sqrt(3)*E^(2/3)-(12*I)*B*sqrt(3)-4*A^2-4*A*E^(1/3)-E^(2/3)+12*B = F, (4*I)*A^2*sqrt(3)-I*sqrt(3)*E^(2/3)-(12*I)*B*sqrt(3)+4*A^2+4*A*E^(1/3)+E^(2/3)-12*B = G, 4*A^2-2*A*E^(1/3)+E^(2/3)-12*B = S, rhs(dsol5))

 

_C1*exp(-(1/6)*3^(1/2)*(E^(1/3)*F)^(1/2)*x/E^(1/3))+_C2*exp((1/6)*3^(1/2)*(E^(1/3)*F)^(1/2)*x/E^(1/3))+_C3*exp(-(1/6)*(-3*E^(1/3)*G)^(1/2)*x/E^(1/3))+_C4*exp((1/6)*(-3*E^(1/3)*G)^(1/2)*x/E^(1/3))+_C5*exp(-(1/6)*6^(1/2)*(E^(1/3)*S)^(1/2)*x/E^(1/3))+_C6*exp((1/6)*6^(1/2)*(E^(1/3)*S)^(1/2)*x/E^(1/3))

(2)

convert(H, trig)

_C1*(cosh((1/6)*3^(1/2)*(E^(1/3)*F)^(1/2)*x/E^(1/3))-sinh((1/6)*3^(1/2)*(E^(1/3)*F)^(1/2)*x/E^(1/3)))+_C2*(cosh((1/6)*3^(1/2)*(E^(1/3)*F)^(1/2)*x/E^(1/3))+sinh((1/6)*3^(1/2)*(E^(1/3)*F)^(1/2)*x/E^(1/3)))+_C3*(cosh((1/6)*(-3*E^(1/3)*G)^(1/2)*x/E^(1/3))-sinh((1/6)*(-3*E^(1/3)*G)^(1/2)*x/E^(1/3)))+_C4*(cosh((1/6)*(-3*E^(1/3)*G)^(1/2)*x/E^(1/3))+sinh((1/6)*(-3*E^(1/3)*G)^(1/2)*x/E^(1/3)))+_C5*(cosh((1/6)*6^(1/2)*(E^(1/3)*S)^(1/2)*x/E^(1/3))-sinh((1/6)*6^(1/2)*(E^(1/3)*S)^(1/2)*x/E^(1/3)))+_C6*(cosh((1/6)*6^(1/2)*(E^(1/3)*S)^(1/2)*x/E^(1/3))+sinh((1/6)*6^(1/2)*(E^(1/3)*S)^(1/2)*x/E^(1/3)))

(3)

NULL

``


 

Download 3.mw

 

 

The DFT windowing functions in the SignalProcessing package seem to be inconsistent in the type of data they will accept, and the type they return.

BartlettHannWindow,  BlackmanHarrisWindow, BlackmanNuttallWindow,   BohmanWindow, CauchyWindow, CosineWindow, ExponentialWindow, FlatTopWindow,  GaussianWindow, HannPoissonWindow, ParzenWindow, PoissonWindow,  RectangleWindow, ReiszWindow, RiemannWindow, TaperedCosineWindow, TriangleWindow, TukeyWindow

accept Arrays, containing almost any data type (haven't tried them all!) as input. and always return a Vector[row].

But

BartlettWindow, BlackmanWindow, HammingWindow, HannWindow, KaiserWindow

require that the option datatype=float[8] be set in the Array() constructor, which is used as input and always return an hfarray.

Thus, for example

with(SignalProcessing);
sig:= Array( -50..50,
                        fill=1
                    ):
BartlettHannWindow(sig); # this works
BartlettWindow(sig);# this fails with datatype unsupported error

Very confusing!!!!

hi ..how i can rewrite answer in compressive format. that result seen readible and incomplex.for example how i can use change of variable, in order to final result has a short format...

thanks1.mw

 

I am having issues with Maple 2016 computing closed form solutions using the sum command. For example, sum((-1)^n, n = 1 .. infinity) evaluates to -1/2 in the help topic, however, when I run the command in a maple document, this result is not obtained. It instead returns sum((-1)^n, n = 1 .. infinity). Likewise, sum( a*r^k, k = 0..infinity) doesn't evaluate to -a/(r-1). How can I get Maple to determine closed form solutions for power series?

Let us consider 

Statistics:-Mode(Binomial(n, p));
                        floor((1 + n) p)

Up to Wiki, the output is not correct. Simply no words.

How to use IterativeMaps:-Bifurcation for two or more dimensional maps. For example, f(x,y)=x*exp(r1*(1-a11*x-a12*y)), g(x,y)=y*exp(r2*(1-a21*x-a22*y)).

If I set a11=1,a12=2,a21=3,a22=4,r2=1, then how can I get the bifurcation rsp r1. Thanks very much!

dsolve(f(x,y),y(x),parametric) in Maple 9.5 outputs an expression for y(_T) and for x(_T).

(from the book "Computer Algebra Recipes for Mathematical Physics by Richard H. Enns, section 7.1.1, finding the parametric equation of the brachistochrone)

but the same command in Maple 2016 outputs an expression for y(x) only.

Why do Maple 9.5 and Maple 2016 produce different output?

Where can I find a help page explaining or giving examples of dsolve, parametric?

 

I want to plot some color points in CIE 1976 color space with SpatterPlot command exactly as showed on the help page. When I try:

restart:with(ColorTools):with(ImageTools):
barvy:=Color("Lab",[80.38,13.50,7.96]); 	
SpatterPlot(barvy,symbol="box");

I got the error:

Error, invalid input: ColorTools:-SpatterPlot expects its 1st argument, colors, to be of type list({ColorTools:-Color, name, string, list({float, nonnegint}), specfunc({COLOR, COLOUR})}), but received _m2194815429568

Where is the problem?
 

with(IterativeMaps);
with(ImageTools);
Logistic := Bifurcation([x], [r*x*(1-x)], [.5], 2.5, 4);
ArrayTools:-Dimensions(Logistic);
ColouringProcedures:-HueToRGB(Logistic);
Embed(Logistic);

This is the code for Bifurcation program of the Logistic map. How can I change the black background color of this figure, and How can I save this figure.

Let us consider the improper integral

int((abs(sin(2*x))-abs(sin(x)))/x, x = 0 .. infinity);

Si(Pi)-Si((1/2)*Pi)+sum(-(-1)^_k*Si(Pi*_k)+signum(sin((1/2)*Pi*_k))*Si((1/2)*Pi*_k)+Si(Pi*_k+Pi)*(-1)^_k-signum(cos((1/2)*Pi*_k))*Si((1/2)*Pi*_k+(1/2)*Pi), _k = 1 .. infinity)
                    

Mathematica 11 produces a similar expression and a warning

Integrate::isub: Warning: infinite subdivision of the integration domain has been used in computation of the definite integral \!\(\*SubsuperscriptBox[\(\[Integral]\), \(0\), \(\[Infinity]\)]\(\*FractionBox[\(\(-Abs[Sin[x]]\) + Abs[Sin[2\ x]]\), \(x\)] \[DifferentialD]x\)\). If the integral is not absolutely convergent, the result may be incorrect.

Up to Pedro Tamaroff http://math.stackexchange.com/questions/61828/proof-of-frullanis-theorem , the answer is 2/Pi*ln(2) because of 

J := int(abs(sin(2*x))-abs(sin(x)), x = 0 .. T) assuming T>2;
-1/2-signum(sin(T))*signum(cos(T))*cos(T)^2+(1/2)*signum(sin(T))*signum(cos(T))+cos(T)*signum(sin(T))+floor(2*T/Pi)

B := limit(J/T, T = infinity);
                               2 /Pi

K := x*(int((abs(sin(2*t))-abs(sin(t)))/t^2, t = x .. 1)) assuming x>0,x<1;

     2*sin(x)*cos(x)-2*Ci(2*x)*x+Ci(x)*x+sin(1)*x-sin(2)*x+2*Ci(2)*x-Ci(1)*x-sin(x)

                         
A := limit(K, x = 0, right);
                               0

Its numeric calculation results 

evalf(Int((abs(sin(2*x))-abs(sin(x)))/x, x = 0 .. infinity));
                        Float(undefined)

which seems not to be true.

The question is: how to obtain the reliable results for it with Maple, both symbolic and numeric? 

Good morning Maple Expert,

 

I would like to explain the concept of piecewise curves in 2D & 3D to my students with plots.In this regard I request the associated expetrs in Maple to provide the appropriate Maple commands to get piecewise curves in 3D space.

 

With warm regards.

 

Mr.M.Anand

Associate Professor in Mathematics.

Hyderabad Institute of Technology and Management

Can i make Explore with number of parameters differs from parameter in explore?
For excemple i whant to make sum with 'l' values wich will declorate in explore, and 'l' - count of them will declorate in same explore, but it dont work, so is it posible?
 

restart

``

``

Explore(add(cat('c', eval('i')), i = 1 .. l), parameters = [l = [seq(i, i = 1 .. 5)], seq(cat('c', eval('i')) = 0 .. 1.0, i = 1 .. l)])

Error, unable to execute seq

 

``

ec := proc (l) global f, p; f := add(cat('c', eval('i')), i = 1 .. l); print(f); p := [seq(cat('c', eval('i')) = 0 .. 1.0, i = 1 .. l)]; Explore(f, parameters = p) end proc;

proc (l) global f, p; f := add(cat('c', eval('i')), i = 1 .. l); print(f); p := [seq(cat('c', eval('i')) = 0 .. 1.0, i = 1 .. l)]; Explore(f, parameters = p) end proc

(1)

``

ec(4);

c1+c2+c3+c4

(2)

Explore(ec(l), l = [seq(i, i = 1 .. 5)])

c1

(3)

``

NULL


 

Download Explore_Problem_Exemple.mw

 

First 39 40 41 42 43 44 45 Last Page 41 of 60