Maple 2016 Questions and Posts

These are Posts and Questions associated with the product, Maple 2016

 

How to solve this problem? I want to display plot of differential equation system

this download link my problem https://drive.google.com/file/d/0B-qKE-5zgVbLeWVMd0xkMFY1Y00/view?usp=sharing

Thank you :)

Hi everyone,

I am desperatly trying to find a reason to those weird results I get using LSSolve. It could really help me to understand, maybe I am using the function the wrong way.
I have a system of equations which is overdetermined that I wrote using an electrical simulation and kirchoff's laws.
I am trying to resolve it using the LSSolve function. Here is the list of residuals :

list := [-0.444299277411586e-2+(270.100000000000-Phi12_18)*D18, -.264819908561346+(627.030000000000-Phi23_18)*D18, .191242220011840+(-259.080000000000-Phi34_18)*D18, 0.269723795794403e-1+(-40.5060000000000-Phi45_18)*D18, 0.674200455699644e-2+(-10.1270000000000-Phi56_18)*D18, .109534122562258+(-197.290000000000-Phi67_18)*D18, 0.481462872723211e-3+(-2.41420000000000-Phi78_18)*D18, -0.346014532189641e-4+(-2.53290000000000-Phi89_18)*D18, -0.402474969346295e-4+(-2.94150000000000-Phi910_18)*D18, -0.632005430249463e-3+(-8.57100000000000-Phi1011_18)*D18, -0.105749265697549e-1+(-37.6580000000000-Phi1112_18)*D18, -0.116305497595306e-1+(-55.3250000000000-Phi1213_18)*D18, -0.581547498854927e-3+(-2.76630000000000-Phi1314_18)*D18, -0.371408130367776e-2+(-22.0900000000000-Phi1415_18)*D18, -0.886173700610320e-2+(-56.4810000000000-Phi1516_18)*D18, -0.478846208996643e-1+(262.447651185421-Phi12_18)*D29+(262.447651185421-Phi12_24)*D36, .348429199898355+(62.3165310883292-Phi23_18)*D29+(62.3165310883292-Phi23_24)*D36, .237294781239637+(41.8563477700905-Phi34_18)*D29+(41.8563477700905-Phi34_24)*D36, 0.356987380524040e-1+(6.12136413036823-Phi45_18)*D29+(6.12136413036823-Phi45_24)*D36, 0.892515544035472e-2+(1.53042068810978-Phi56_18)*D29+(1.53042068810978-Phi56_24)*D36, .163733792213247+(26.7554245920538-Phi67_18)*D29+(26.7554245920538-Phi67_24)*D36, 0.917897899527287e-3+(-0.110562085900856e-3-Phi78_18)*D29+(-0.110562085900856e-3-Phi78_24)*D36, 0.242480164562623e-4+(-.283316330467957-Phi89_18)*D29+(-.283316330467957-Phi89_24)*D36, 0.281967728090880e-4+(-.329007391842407-Phi910_18)*D29+(-.329007391842407-Phi910_24)*D36, -0.812318100863302e-3+(-1.22850243118112-Phi1011_18)*D29+(-1.22850243118112-Phi1011_24)*D36, -0.174002698946928e-1+(-9.57006175329410-Phi1112_18)*D29+(-9.57006175329410-Phi1112_24)*D36, -.125540933056649+(-44.2197489328973-Phi1213_18)*D29+(-44.2197489328973-Phi1213_24)*D36, -0.627722694977691e-2+(-2.21106159188713-Phi1314_18)*D29+(-2.21106159188713-Phi1314_24)*D36, -0.739424545575381e-1+(-24.8403831529913-Phi1415_18)*D29+(-24.8403831529913-Phi1415_24)*D36, -.203976357415920+(-68.0132712014090-Phi1516_18)*D29+(-68.0132712014090-Phi1516_24)*D36, 0.196522429267177e-1+(197.940000000000-Phi12_24)*D27, 0.368371276889244e-2+(57.8900000000000-Phi23_24)*D27, 0.144256702539785e-2+(48.4450000000000-Phi34_24)*D27, -0.115630146715321e-3+(10.-Phi45_24)*D27, -0.283028527731083e-4+(2.50010000000000-Phi56_24)*D27, -0.300476205822746e-2+(66.2640000000000-Phi67_24)*D27, -0.653509876948917e-3+(2.69040000000000-Phi78_24)*D27, -0.126753046978926e-2+(4.44790000000000-Phi89_24)*D27, -0.147212636486122e-2+(5.16530000000000-Phi910_24)*D27, -0.484316181019253e-2+(16.6000000000000-Phi1011_24)*D27, -0.298854531528585e-1+(96.8770000000000-Phi1112_24)*D27, -.120604432493978+(315.410000000000-Phi1213_24)*D27, -0.603334119632106e-2+(15.7700000000000-Phi1314_24)*D27, -0.664471982996522e-1+(167.170000000000-Phi1415_24)*D27, 0.786913003105101e-1+(-326.760000000000-Phi1516_24)*D27]


I know that all D values must be positive. When resolving the system without any constraints (D >= 0), i get the values I expected (knowing the input I used in the simulation), with a really low error :

result := LSSolve(list);

[1.82130325886306*10^(-8), [D10 = 0.200009334740825e-2, D11 = 0.666620509302803e-3, D14 = 0.222215208246154e-2, D15 = 0.128202791383597e-2, D17 = 0.499886140344411e-2, D19 = 0.302925526676043e-3, D2 = 0.100002349341980e-2, D20 = 0.142849446596938e-3, D22 = 0.111121127122156e-1, D23 = 0.222228054119820e-2, D25 = 0.714293621502836e-3, D26 = 0.833326349912537e-3, D28 = 0.217396531719902e-3, D3 = 0.400217567900069e-3, D6 = 0.166878862202449e-3, D7 = 0.999969828547956e-2, Phi1011_17 = -1.22850243118112, Phi1011_19 = -20.5335193736012, Phi1011_21 = -104.090964313150, Phi1011_23 = 19.2144499395683, Phi1112_17 = -9.57006175329410, Phi1112_19 = -81.6848630234903, Phi1112_21 = -242.149849175388, Phi1112_23 = 109.001351349915, Phi1213_17 = -44.2197489328973, Phi1213_19 = -92.8267195929548, Phi1213_21 = -204.444165890808, Phi1213_23 = -61.4447612788985, Phi12_17 = 262.447651185421, Phi12_19 = 262.149192406679, Phi12_21 = 256.248405276737, Phi12_23 = 246.521172863223, Phi1314_17 = -2.21106159188713, Phi1314_19 = -4.64255435896474, Phi1314_21 = -10.2212158757032, Phi1314_23 = -3.07798400495386, Phi1415_17 = -24.8403831529913, Phi1415_19 = -30.5944507718603, Phi1415_21 = -45.5847025259923, Phi1415_23 = -77.3297680041818, Phi1516_17 = -68.0132712014090, Phi1516_19 = -74.2023324471993, Phi1516_21 = -95.1952296374558, Phi1516_23 = -132.328467080565, Phi23_17 = 62.3165310883292, Phi23_19 = 200.804225452845, Phi23_21 = 130.018791598707, Phi23_23 = 73.7043262431720, Phi34_17 = 41.8563477700905, Phi34_19 = 343.409987932231, Phi34_21 = 159.593996060841, Phi34_23 = 62.6564757702407, Phi45_17 = 6.12136413036823, Phi45_19 = 12.3839171939746, Phi45_21 = 46.0005281797016, Phi45_23 = 13.1665796516893, Phi56_17 = 1.53042068810978, Phi56_19 = 3.16614687399595, Phi56_21 = 11.4998114891963, Phi56_23 = 3.29093394692614, Phi67_17 = 26.7554245920538, Phi67_19 = -244.288977944524, Phi67_21 = 376.351493538080, Phi67_23 = 88.4830465193635, Phi78_17 = -0.110562085900856e-3, Phi78_19 = -6.28061380389266, Phi78_21 = 43.7035845962372, Phi78_23 = 3.35123473697264, Phi89_17 = -.283316330467957, Phi89_19 = -6.18811507913178, Phi89_21 = -13.9258224376815, Phi89_23 = 5.20325572546379, Phi910_17 = -.329007391842407, Phi910_19 = -7.18580970783931, Phi910_21 = -16.1669897128450, Phi910_23 = 6.04291224185087]]


When adding the constraints that D should be positive (and that are actually positive in the previous result), I get a worse result in term of precisions :

LSSolve(list, {D10 >= 0, D11 >= 0, D14 >= 0, D15 >= 0, D17 >= 0, D19 >= 0, D2 >= 0, D20 >= 0, D22 >= 0, D23 >= 0, D25 >= 0, D26 >= 0, D28 >= 0, D3 >= 0, D6 >= 0, D7 >= 0});

[0.667302976414869964e-1, [D10 = 0.240199442379079e-2, D11 = 0.666577572133538e-3, D14 = 0.222218786790062e-2, D15 = 0.128192441757651e-2, D17 = 0.278678889056743e-2, D19 = 0.200473317719685e-3, D2 = 0.109938538155804e-2, D20 = 0.840721762649974e-4, D22 = 0.685770482726534e-3, D23 = -1.387530857*10^(-312), D25 = 0.714397733627028e-3, D26 = 0.833201232339238e-3, D28 = 0.204319731851617e-3, D3 = 0.419994015872111e-3, D6 = 0.191996909862889e-3, D7 = 0.103884505319047e-1, Phi1011_17 = -.709707335593168, Phi1011_19 = -15.7863975896827, Phi1011_21 = -151.171843708558, Phi1011_23 = 19.2211409030343, Phi1112_17 = -8.90604676283968, Phi1112_19 = -75.8627539382983, Phi1112_21 = -311.423930967299, Phi1112_23 = 109.002880650927, Phi1213_17 = -54.9212365194647, Phi1213_19 = -89.9790565093006, Phi1213_21 = -250.971671756001, Phi1213_23 = -61.5160003335629, Phi12_17 = 251.480872515883, Phi12_19 = 255.977573006508, Phi12_21 = 254.397100891354, Phi12_23 = 246.524672366158, Phi1314_17 = -2.74614386328796, Phi1314_19 = -4.48401822538664, Phi1314_21 = -12.5381572344771, Phi1314_23 = -3.08154491280567, Phi1415_17 = -31.8947514252141, Phi1415_19 = -30.8090400512349, Phi1415_21 = -51.0499196769535, Phi1415_23 = -77.3268969229600, Phi1516_17 = -87.7947790488482, Phi1516_19 = -75.5403005246575, Phi1516_21 = -101.763771364478, Phi1516_23 = -132.314524393221, Phi23_17 = 94.0093590848714, Phi23_19 = 86.4429757025976, Phi23_21 = 108.554765004168, Phi23_23 = 73.7072279431268, Phi34_17 = 87.6938924370977, Phi34_19 = 82.3922347753764, Phi34_21 = 88.5582078636840, Phi34_23 = 62.6604078051191, Phi45_17 = 13.1910198060107, Phi45_19 = 69.3008595136787, Phi45_21 = 15.5530983566712, Phi45_23 = 13.1677681559684, Phi56_17 = 3.29792072169498, Phi56_19 = 17.4003349272078, Phi56_21 = 3.88187632917493, Phi56_23 = 3.29123115133383, Phi67_17 = 60.0045707036166, Phi67_19 = 54.3070868626015, Phi67_21 = 87.9421288802858, Phi67_23 = 88.4929920125095, Phi78_17 = .279952186311827, Phi78_19 = -3.50632712699693, Phi78_21 = -20.3872167203319, Phi78_23 = 3.35213748642018, Phi89_17 = -0.991299169828910e-1, Phi89_19 = -4.44636683843093, Phi89_21 = 297.888811926331, Phi89_23 = 5.20500671661437, Phi910_17 = -.115101700555720, Phi910_19 = -5.16603761776826, Phi910_21 = 346.033351291632, Phi910_23 = 6.04494564310825]]

I also get the warning "limiting number of major iterations has been reached".
Can someone explain me?

It may not seem important at first sight, but sometimes when using my program I get wrong values and a negative D, which is not possible. Therefore I try to add a positive constraint, but the LLSolve function doesn't return anything except the error "no improved point could be found", which is weird because when I manually substitute the value I consider correct, i get a really low error. I can show you the related list of equations if you are interested...

 

Thanks in advance,

Lilian

Hi, i have a problem with subs instruction. I'd like to change a function D(s) with symbol d/ds d(t), but i won't to calculate derivate, I want only change symbol. Thanks a lot.

What coding will display a spherical cap of an arbitrary sphere (an arbitrarily located centre and arbitrary radius) where the cap covers an arbitrary solid angle and the radius to the cap's centre is any arbitrary radius of the sphere?

Assume the sphere is defined by its radius and its azimuth and polar angles.

how can I print my equation or configure maple so that they don't try to autofit themselves in the window? and what would the best way to export them to MATLAB be? I know there's the codegeneration command.

 

For example, I noticed that the output of some commands like StateSpace prints the equations in a way that if they are too long, they won't try tu fit, but rather it lets you scroll to the right:

 

When one uses the PolynomialIdeals package, then how should he ask the elemnts in an ideal or the number of generators?

An idea can be writing a proc getting a polynomialideal and returning a list with the generators as its elements in this way. Converting the polynomialideal to a list, then deleting its three last entries. But I'm wondering if there is any other way to do this? It's reasonable to be able to ask generators of an ideal of result of some computations in polynomialideal package.

 

I'm trying to program a procedure that will return me a list of positions defining equally spaced points (planets) around a circumference, for example:
PSI := [0, Pi]; # Location of 2 planets
PSI := [0, ((2/3)*Pi) , ((4/3)*Pi) ]; # For 3 Planets
I'm new to maple so most commands are new to me, I tried building the size of the list with [0 $ n] because I want the first position to always be at 0 degrees. The first problem is that I get this error:

Error, reserved word `for` unexpected

 

nplanets := 2;

2

(1)

make_PSI :=
proc(nplanets);
local n,psin,i,PSI:
n = nplanets;
psin  :=(pi*2)/n;
PSI := [0 $ n];
for i from 1 to n do
 angle :=(psin*i);
 op(i,PSI) := angle;
end do;
end;

 

 

Error, reserved word `for` unexpected

 


Any advice would be appreciated!

Download planetspace.mw

When we have a two variable function f(x,y), Maple can plot f-inverse of a value with contourplot. But how about contourplot of a three variable function? for example f-1(0) which can be a surface in the 3 dimensional space. The contourplot3d is just the contourplot (2-dimensional) which also shows the value of f(x,y) on the third axis. So this is not what I want.

Is there any command or package in Maple that computes blow ups? I didn't find blow up in the help.

Hi Maple friends,

I am trying to run a script I have written in Maple 2016 directly from my Terminal on my MacAir. I have OSSierra 10.12.1 and Maple 2016.

My script needs to read a file in and then run, whilst writing to some files on the way. I need this, since I want my script to be run on a large computer on my institute, where I have no interface/Maple open and has to access data on the way.

So, I go to Terminal, and stand in the directory of where the file/scrips is (lets call it terminal_test.mpl OR terminal_test.txt) and then write:

./maple terminal_test.mpl

and get back

No such file or directory 

I also get this if I use .txt file AND if I write "Maple 2016" instead of ./maple. I have tried to write 

open "Maple 2016" terminal_test.mpl 

and then Maple opens in the right file, but does not run it. This is just to show, that my terminal can find the program. But this is not what I want. As I said, I would like it to:

start running a script from Terminal - read a file to be used in the script - on the way, write to 6-8 different files, that I can then access whilst the script is running. So my questions are: 

  1. How do I run the script/file in the first place, and am I in the right place?
  2. Where do I place the files to be read during the running of the script (Reading to script works fine already, so it should work also if I can just run the script/file)?
  3. Where do the files I create in my script end, so I can access them?

Thank you so much for any answer - I have not been able to find anything on the net so far that could help me, but I know you guys are really good on this.

Tomas.

 

Hello everyone.

Please I am trying to obtain series expansion of the expression below in u and v up to order 30 but encounter difficulties cum maple is slow to display solution. Can I get help on the code and what to do to optimize the displayed time of maple?

Thank you in anticipation of your quick and positive responses and suggestions.

convert(series(convert(series((y[n]+((-8 h u^2 v^2-4 u^3 sin(u) h+2 sin(2 u) h u^3+2 sin(2 v) h v^3-4 v^3 h sin(v)+2 v^3 h sin(2 u+v)+2 u^3 h sin(u-2 v)+2 u^3 h sin(u+2 v)-2 v^3 h sin(2 u-v)-u^3 h sin(2 u+2 v)-v^3 h sin(2 u+2 v)-u^3 h sin(2 u-2 v)+v^3 h sin(2 u-2 v)+4 h u^3 v^2 sin(2 u)+4 h u^2 v^3 sin(2 v)-4 h u^3 v^2 sin(u-v)+4 h u^2 v^3 sin(u-v)-4 h u^3 v^2 sin(u+v)-4 h u^2 v^3 sin(u+v)+4 h u^2 v^2 cos(u)+4 h u^2 v^2 cos(2 u)+4 h u^2 v^2 cos(2 v)+4 h u^2 v^2 cos(v)-4 h u^3 v cos(2 u-v)-2 h u^2 v^2 cos(2 u-v)+2 h u v^3 cos(2 u-v)+4 h u^3 v cos(2 u+v)-2 h u^2 v^2 cos(2 u+v)-2 h u v^3 cos(2 u+v)+2 h u^3 v cos(u-2 v)-2 h u^2 v^2 cos(u-2 v)-4 h u v^3 cos(u-2 v)-2 h u^3 v cos(u+2 v)-2 h u^2 v^2 cos(u+2 v)+4 h u v^3 cos(u+2 v)+4 h u^3 v cos(u-v)+4 h u v^3 cos(u-v)-4 h u^3 v cos(u+v)-4 h u v^3 cos(u+v)+4 u sin(u) v^2 h-2 sin(2 u) h u v^2-2 sin(2 v) h u^2 v+4 v h sin(v) u^2-2 v u^2 h sin(2 u+v)-2 u v^2 h sin(u-2 v)-2 u v^2 h sin(u+2 v)+2 v u^2 h sin(2 u-v)+v u^2 h sin(2 u+2 v)+u v^2 h sin(2 u+2 v)-v u^2 h sin(2 u-2 v)+u v^2 h sin(2 u-2 v)) f[n])/(-12 u^2 v^2+4 sin(u) u^3 v^2+4 sin(2 u) u^3 v^2+4 sin(2 v) u^2 v^3+4 sin(v) u^2 v^3-2 sin(2 u+v) u^3 v^2+2 sin(2 u+v) u^2 v^3-4 sin(u-v) u^3 v^2+4 sin(u-v) u^2 v^3-4 sin(u+v) u^3 v^2-4 sin(u+v) u^2 v^3+2 sin(u-2 v) u^3 v^2+2 sin(u-2 v) u^2 v^3+2 sin(u+2 v) u^3 v^2-2 sin(u+2 v) u^2 v^3-2 sin(2 u-v) u^3 v^2-2 sin(2 u-v) u^2 v^3+8 cos(u) u^2 v^2+4 cos(2 u) u^2 v^2+4 cos(2 v) u^2 v^2+8 cos(v) u^2 v^2-2 cos(2 u-v) u^3 v-4 cos(2 u-v) u^2 v^2-2 cos(2 u-v) u v^3+2 cos(2 u+v) u^3 v-4 cos(2 u+v) u^2 v^2+2 cos(2 u+v) u v^3-2 cos(u-2 v) u^3 v-4 cos(u-2 v) u^2 v^2-2 cos(u-2 v) u v^3+2 cos(u+2 v) u^3 v-4 cos(u+2 v) u^2 v^2+2 cos(u+2 v) u v^3-cos(2 u+2 v) u^3 v+2 cos(2 u+2 v) u^2 v^2-cos(2 u+2 v) u v^3+cos(2 u-2 v) u^3 v+2 cos(2 u-2 v) u^2 v^2+cos(2 u-2 v) u v^3+4 cos(u-v) u^3 v+4 cos(u-v) u v^3-4 cos(u+v) u^3 v-4 cos(u+v) u v^3)+((-8 h u^2 v^2+8 u^3 sin(u) h-4 sin(2 u) h u^3-4 sin(2 v) h v^3+8 v^3 h sin(v)-4 v^3 h sin(2 u+v)-4 u^3 h sin(u-2 v)-4 u^3 h sin(u+2 v)+4 v^3 h sin(2 u-v)+2 u^3 h sin(2 u+2 v)+2 v^3 h sin(2 u+2 v)+2 u^3 h sin(2 u-2 v)-2 v^3 h sin(2 u-2 v)+8 h u^3 v^2 sin(u)+8 h u^2 v^3 sin(v)-4 h u^3 v^2 sin(2 u+v)+4 h u^2 v^3 sin(2 u+v)+4 h u^3 v^2 sin(u-2 v)+4 h u^2 v^3 sin(u-2 v)+4 h u^3 v^2 sin(u+2 v)-4 h u^2 v^3 sin(u+2 v)-4 h u^3 v^2 sin(2 u-v)-4 h u^2 v^3 sin(2 u-v)+8 h u^2 v^2 cos(u)+8 h u^2 v^2 cos(v)+4 h u^3 v cos(2 u-v)-4 h u^2 v^2 cos(2 u-v)-8 h u v^3 cos(2 u-v)-4 h u^3 v cos(2 u+v)-4 h u^2 v^2 cos(2 u+v)+8 h u v^3 cos(2 u+v)-8 h u^3 v cos(u-2 v)-4 h u^2 v^2 cos(u-2 v)+4 h u v^3 cos(u-2 v)+8 h u^3 v cos(u+2 v)-4 h u^2 v^2 cos(u+2 v)-4 h u v^3 cos(u+2 v)-2 h u^3 v cos(2 u+2 v)+4 h u^2 v^2 cos(2 u+2 v)-2 h u v^3 cos(2 u+2 v)+2 h u^3 v cos(2 u-2 v)+4 h u^2 v^2 cos(2 u-2 v)+2 h u v^3 cos(2 u-2 v)-8 u sin(u) v^2 h+4 sin(2 u) h u v^2+4 sin(2 v) h u^2 v-8 v h sin(v) u^2+4 v u^2 h sin(2 u+v)+4 u v^2 h sin(u-2 v)+4 u v^2 h sin(u+2 v)-4 v u^2 h sin(2 u-v)-2 v u^2 h sin(2 u+2 v)-2 u v^2 h sin(2 u+2 v)+2 v u^2 h sin(2 u-2 v)-2 u v^2 h sin(2 u-2 v)) f[n+1])/(-12 u^2 v^2+4 sin(u) u^3 v^2+4 sin(2 u) u^3 v^2+4 sin(2 v) u^2 v^3+4 sin(v) u^2 v^3-2 sin(2 u+v) u^3 v^2+2 sin(2 u+v) u^2 v^3-4 sin(u-v) u^3 v^2+4 sin(u-v) u^2 v^3-4 sin(u+v) u^3 v^2-4 sin(u+v) u^2 v^3+2 sin(u-2 v) u^3 v^2+2 sin(u-2 v) u^2 v^3+2 sin(u+2 v) u^3 v^2-2 sin(u+2 v) u^2 v^3-2 sin(2 u-v) u^3 v^2-2 sin(2 u-v) u^2 v^3+8 cos(u) u^2 v^2+4 cos(2 u) u^2 v^2+4 cos(2 v) u^2 v^2+8 cos(v) u^2 v^2-2 cos(2 u-v) u^3 v-4 cos(2 u-v) u^2 v^2-2 cos(2 u-v) u v^3+2 cos(2 u+v) u^3 v-4 cos(2 u+v) u^2 v^2+2 cos(2 u+v) u v^3-2 cos(u-2 v) u^3 v-4 cos(u-2 v) u^2 v^2-2 cos(u-2 v) u v^3+2 cos(u+2 v) u^3 v-4 cos(u+2 v) u^2 v^2+2 cos(u+2 v) u v^3-cos(2 u+2 v) u^3 v+2 cos(2 u+2 v) u^2 v^2-cos(2 u+2 v) u v^3+cos(2 u-2 v) u^3 v+2 cos(2 u-2 v) u^2 v^2+cos(2 u-2 v) u v^3+4 cos(u-v) u^3 v+4 cos(u-v) u v^3-4 cos(u+v) u^3 v-4 cos(u+v) u v^3)+((-8 h u^2 v^2-4 u^3 sin(u) h+2 sin(2 u) h u^3+2 sin(2 v) h v^3-4 v^3 h sin(v)+2 v^3 h sin(2 u+v)+2 u^3 h sin(u-2 v)+2 u^3 h sin(u+2 v)-2 v^3 h sin(2 u-v)-u^3 h sin(2 u+2 v)-v^3 h sin(2 u+2 v)-u^3 h sin(2 u-2 v)+v^3 h sin(2 u-2 v)+4 h u^3 v^2 sin(2 u)+4 h u^2 v^3 sin(2 v)-4 h u^3 v^2 sin(u-v)+4 h u^2 v^3 sin(u-v)-4 h u^3 v^2 sin(u+v)-4 h u^2 v^3 sin(u+v)+4 h u^2 v^2 cos(u)+4 h u^2 v^2 cos(2 u)+4 h u^2 v^2 cos(2 v)+4 h u^2 v^2 cos(v)-4 h u^3 v cos(2 u-v)-2 h u^2 v^2 cos(2 u-v)+2 h u v^3 cos(2 u-v)+4 h u^3 v cos(2 u+v)-2 h u^2 v^2 cos(2 u+v)-2 h u v^3 cos(2 u+v)+2 h u^3 v cos(u-2 v)-2 h u^2 v^2 cos(u-2 v)-4 h u v^3 cos(u-2 v)-2 h u^3 v cos(u+2 v)-2 h u^2 v^2 cos(u+2 v)+4 h u v^3 cos(u+2 v)+4 h u^3 v cos(u-v)+4 h u v^3 cos(u-v)-4 h u^3 v cos(u+v)-4 h u v^3 cos(u+v)+4 u sin(u) v^2 h-2 sin(2 u) h u v^2-2 sin(2 v) h u^2 v+4 v h sin(v) u^2-2 v u^2 h sin(2 u+v)-2 u v^2 h sin(u-2 v)-2 u v^2 h sin(u+2 v)+2 v u^2 h sin(2 u-v)+v u^2 h sin(2 u+2 v)+u v^2 h sin(2 u+2 v)-v u^2 h sin(2 u-2 v)+u v^2 h sin(2 u-2 v)) f[n+2])/(-12 u^2 v^2+4 sin(u) u^3 v^2+4 sin(2 u) u^3 v^2+4 sin(2 v) u^2 v^3+4 sin(v) u^2 v^3-2 sin(2 u+v) u^3 v^2+2 sin(2 u+v) u^2 v^3-4 sin(u-v) u^3 v^2+4 sin(u-v) u^2 v^3-4 sin(u+v) u^3 v^2-4 sin(u+v) u^2 v^3+2 sin(u-2 v) u^3 v^2+2 sin(u-2 v) u^2 v^3+2 sin(u+2 v) u^3 v^2-2 sin(u+2 v) u^2 v^3-2 sin(2 u-v) u^3 v^2-2 sin(2 u-v) u^2 v^3+8 cos(u) u^2 v^2+4 cos(2 u) u^2 v^2+4 cos(2 v) u^2 v^2+8 cos(v) u^2 v^2-2 cos(2 u-v) u^3 v-4 cos(2 u-v) u^2 v^2-2 cos(2 u-v) u v^3+2 cos(2 u+v) u^3 v-4 cos(2 u+v) u^2 v^2+2 cos(2 u+v) u v^3-2 cos(u-2 v) u^3 v-4 cos(u-2 v) u^2 v^2-2 cos(u-2 v) u v^3+2 cos(u+2 v) u^3 v-4 cos(u+2 v) u^2 v^2+2 cos(u+2 v) u v^3-cos(2 u+2 v) u^3 v+2 cos(2 u+2 v) u^2 v^2-cos(2 u+2 v) u v^3+cos(2 u-2 v) u^3 v+2 cos(2 u-2 v) u^2 v^2+cos(2 u-2 v) u v^3+4 cos(u-v) u^3 v+4 cos(u-v) u v^3-4 cos(u+v) u^3 v-4 cos(u+v) u v^3)+((-6 u^2 h^2-6 v^2 h^2-4 cos(2 u) h^2 u^2 v^2-4 cos(2 v) h^2 u^2 v^2+8 v^2 u^2 h^2 cos(u-v)+8 v^2 u^2 h^2 cos(u+v)+8 u sin(u) v^2 h^2+8 sin(2 u) h^2 u v^2+8 sin(2 v) h^2 u^2 v+8 v h^2 sin(v) u^2+4 v u^2 h^2 sin(2 u+v)-4 u v^2 h^2 sin(2 u+v)+8 v u^2 h^2 sin(u-v)-8 sin(u-v) h^2 u v^2-8 v u^2 h^2 sin(u+v)-8 sin(u+v) h^2 u v^2+4 v u^2 h^2 sin(u-2 v)+4 u v^2 h^2 sin(u-2 v)-4 v u^2 h^2 sin(u+2 v)+4 u v^2 h^2 sin(u+2 v)-4 v u^2 h^2 sin(2 u-v)-4 u v^2 h^2 sin(2 u-v)-4 u v h^2 cos(2 u-v)+4 u v h^2 cos(2 u+v)-4 u v h^2 cos(u-2 v)+4 u v h^2 cos(u+2 v)-2 u v h^2 cos(2 u+2 v)+2 u v h^2 cos(2 u-2 v)+8 cos(u-v) h^2 u v-8 cos(u+v) h^2 u v-8 v^2 u^2 h^2+8 h^2 cos(u) u^2-2 cos(2 u) h^2 u^2+6 cos(2 u) h^2 v^2+6 cos(2 v) h^2 u^2-2 cos(2 v) h^2 v^2+8 h^2 cos(v) v^2-4 v^2 h^2 cos(2 u-v)-4 v^2 h^2 cos(2 u+v)-4 u^2 h^2 cos(u-2 v)-4 u^2 h^2 cos(u+2 v)+u^2 h^2 cos(2 u+2 v)+v^2 h^2 cos(2 u+2 v)+u^2 h^2 cos(2 u-2 v)+v^2 h^2 cos(2 u-2 v)) g[n])/(-12 u^2 v^2+4 sin(u) u^3 v^2+4 sin(2 u) u^3 v^2+4 sin(2 v) u^2 v^3+4 sin(v) u^2 v^3-2 sin(2 u+v) u^3 v^2+2 sin(2 u+v) u^2 v^3-4 sin(u-v) u^3 v^2+4 sin(u-v) u^2 v^3-4 sin(u+v) u^3 v^2-4 sin(u+v) u^2 v^3+2 sin(u-2 v) u^3 v^2+2 sin(u-2 v) u^2 v^3+2 sin(u+2 v) u^3 v^2-2 sin(u+2 v) u^2 v^3-2 sin(2 u-v) u^3 v^2-2 sin(2 u-v) u^2 v^3+8 cos(u) u^2 v^2+4 cos(2 u) u^2 v^2+4 cos(2 v) u^2 v^2+8 cos(v) u^2 v^2-2 cos(2 u-v) u^3 v-4 cos(2 u-v) u^2 v^2-2 cos(2 u-v) u v^3+2 cos(2 u+v) u^3 v-4 cos(2 u+v) u^2 v^2+2 cos(2 u+v) u v^3-2 cos(u-2 v) u^3 v-4 cos(u-2 v) u^2 v^2-2 cos(u-2 v) u v^3+2 cos(u+2 v) u^3 v-4 cos(u+2 v) u^2 v^2+2 cos(u+2 v) u v^3-cos(2 u+2 v) u^3 v+2 cos(2 u+2 v) u^2 v^2-cos(2 u+2 v) u v^3+cos(2 u-2 v) u^3 v+2 cos(2 u-2 v) u^2 v^2+cos(2 u-2 v) u v^3+4 cos(u-v) u^3 v+4 cos(u-v) u v^3-4 cos(u+v) u^3 v-4 cos(u+v) u v^3)+((6 u^2 h^2+6 v^2 h^2+4 cos(2 u) h^2 u^2 v^2+4 cos(2 v) h^2 u^2 v^2-8 v^2 u^2 h^2 cos(u-v)-8 v^2 u^2 h^2 cos(u+v)-8 u sin(u) v^2 h^2-8 sin(2 u) h^2 u v^2-8 sin(2 v) h^2 u^2 v-8 v h^2 sin(v) u^2-4 v u^2 h^2 sin(2 u+v)+4 u v^2 h^2 sin(2 u+v)-8 v u^2 h^2 sin(u-v)+8 sin(u-v) h^2 u v^2+8 v u^2 h^2 sin(u+v)+8 sin(u+v) h^2 u v^2-4 v u^2 h^2 sin(u-2 v)-4 u v^2 h^2 sin(u-2 v)+4 v u^2 h^2 sin(u+2 v)-4 u v^2 h^2 sin(u+2 v)+4 v u^2 h^2 sin(2 u-v)+4 u v^2 h^2 sin(2 u-v)+4 u v h^2 cos(2 u-v)-4 u v h^2 cos(2 u+v)+4 u v h^2 cos(u-2 v)-4 u v h^2 cos(u+2 v)+2 u v h^2 cos(2 u+2 v)-2 u v h^2 cos(2 u-2 v)-8 cos(u-v) h^2 u v+8 cos(u+v) h^2 u v+8 v^2 u^2 h^2-8 h^2 cos(u) u^2+2 cos(2 u) h^2 u^2-6 cos(2 u) h^2 v^2-6 cos(2 v) h^2 u^2+2 cos(2 v) h^2 v^2-8 h^2 cos(v) v^2+4 v^2 h^2 cos(2 u-v)+4 v^2 h^2 cos(2 u+v)+4 u^2 h^2 cos(u-2 v)+4 u^2 h^2 cos(u+2 v)-u^2 h^2 cos(2 u+2 v)-v^2 h^2 cos(2 u+2 v)-u^2 h^2 cos(2 u-2 v)-v^2 h^2 cos(2 u-2 v)) g[n+2])/(-12 u^2 v^2+4 sin(u) u^3 v^2+4 sin(2 u) u^3 v^2+4 sin(2 v) u^2 v^3+4 sin(v) u^2 v^3-2 sin(2 u+v) u^3 v^2+2 sin(2 u+v) u^2 v^3-4 sin(u-v) u^3 v^2+4 sin(u-v) u^2 v^3-4 sin(u+v) u^3 v^2-4 sin(u+v) u^2 v^3+2 sin(u-2 v) u^3 v^2+2 sin(u-2 v) u^2 v^3+2 sin(u+2 v) u^3 v^2-2 sin(u+2 v) u^2 v^3-2 sin(2 u-v) u^3 v^2-2 sin(2 u-v) u^2 v^3+8 cos(u) u^2 v^2+4 cos(2 u) u^2 v^2+4 cos(2 v) u^2 v^2+8 cos(v) u^2 v^2-2 cos(2 u-v) u^3 v-4 cos(2 u-v) u^2 v^2-2 cos(2 u-v) u v^3+2 cos(2 u+v) u^3 v-4 cos(2 u+v) u^2 v^2+2 cos(2 u+v) u v^3-2 cos(u-2 v) u^3 v-4 cos(u-2 v) u^2 v^2-2 cos(u-2 v) u v^3+2 cos(u+2 v) u^3 v-4 cos(u+2 v) u^2 v^2+2 cos(u+2 v) u v^3-cos(2 u+2 v) u^3 v+2 cos(2 u+2 v) u^2 v^2-cos(2 u+2 v) u v^3+cos(2 u-2 v) u^3 v+2 cos(2 u-2 v) u^2 v^2+cos(2 u-2 v) u v^3+4 cos(u-v) u^3 v+4 cos(u-v) u v^3-4 cos(u+v) u^3 v-4 cos(u+v) u v^3)),u=0,32),polynom),v=0,32),polynom);

Hi, 

Can we tell maple to give output in a form which contain any specific term or expression. For example- Can I tell maple to give output which contain (x^2+2*x+3) expression in the output. I used various combinations in collect command but it doesn't work. It is shown in enclosed maple worksheet.

I have some questions about output produced by maple. I have attached a maple worksheet in which I asked the questions in comments. Please help mein in this problem because it become very tedious to type each expression by hand in desired form. If maple produce it by some means it would be great help.

desired_form_in_output.mw

Thanks and Regards,

Nilesh

 

 

Dear Community,

Entering a long line in 1D mode breaks at the right window bounday. How could I prevent this? I would like the entered line stay just as one, single, long line extending over the window boundary and I would like to use the bottom window scroll bar to view it. BTW it also does not appear, so how could I invoke it? I use Maple2016. I have neither found any information about this in the help, nor in the documentation.

Also is there a possibility to split the IDE screen vertically, as e.g. in Visual Studio? Looking at long programs this feature is very useful.

tx in advance,

best regards

Andras

I am computing some finite points in the plane. Then I'm using point style plot to plot them. My points have order and I want to conncet the i-th point to the (i+1)-th point with a line segment. I searched the help but I didn't figure out how to do it. Is it possible to do this in Maple?

Is there any method or a command to use or type so Maple start running something or evaluating and if it took more than a specific amount of time, then itself automatically stops itself without needing me to interrupt the evaluation?

For example let's say I wrote a proc, for some inputs it may compute the output fast but in some it may even don't answer after hours. Now I am writing a for and I don't know for which steps it can answer in less than a minute. So I like to add something so that Maple starts the FOR but in steps that it takes more than a minute, it automatically stops evaluation at that step and jump to the next step.

First 21 22 23 24 25 26 27 Last Page 23 of 60