Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

Hi,

I want to solve system of PDE equations by maple and i dont know how can i write it codes that can solve them for me. Can you create the code for the equation

Thank you

Good day,
 

1. Please I need your greatest help. Can anyone please help me to run the examples on the attached papers on Maple software?

 2. Also help me to plot the graphs along with the exact solution

 3. If possible with tables

 I tried but did not get the results as expected. I shall be very grateful if I can get assistance from you

 

Thanks
 

Dear all,

consider two lists of complex values :

list1 := [l1,l2,l3,l4,l5]

list2 := [s1,s2,s3,s4,s5].

There is a set of second order differential equation

d^2u(k)/dt^2+I*A*du/dt-B*u=0

where A is sum of elements of list1 and list2 and B is multiplication of their element. Therefore,

d^2u[1](k)/dt^2+I*(l1+s1)*du[1]/dt-(l1*s1)*u[1]=0

d^2u[2](k)/dt^2+I*(l2+s2)*du[2]/dt-(l2*s2)*u[2]=0

d^2u[3](k)/dt^2+I*(l3+s3)*du[3]/dt-(l3*s3)*u[3]=0

d^2u[4](k)/dt^2+I*(l4+s4)*du[4]/dt-(l4*s4)*u[4]=0

d^2u[5](k)/dt^2+I*(l5+s5)*du[5]/dt-(l5*s5)*u[5]=0

How can I create a set of differential equations and initial conditions based on nops(list1), then solve this system of differential equations numerically in Maple.

since u[i] are function of k, next step is to transforme them to real space by inverse fourier transform.

finally save the results and plot them.

Note that for simplisity I wrote a linear equation but it is not. so, because of nonlinear terms it is not possible to use superposition of the solution. I have to take them as coupled system of equations.

====

for example

list1 := [ [0., -5.496799068*10^(-15)-0.*I], [.1, 5.201897725*10^(-16)-1.188994754*I], [.2, 6.924043163*10^(-17)-4.747763855*I], [.3, 2.297497722*10^(-17)-10.66272177*I], [.4, 1.159126178*10^(-17)-18.96299588*I] ] 

list2 :=[ [0., -8.634351786*10^(-7)-67.81404036*I], [.1, -0.7387644021e-5-67.76491234*I], [.2, -0.1433025271e-4-67.59922295*I], [.3, -0.2231598645e-4-67.25152449*I], [.4, -0.3280855430e-4-66.56357035*I] ]

where first element is k and the second value is l_i and s_i

the differential equation is

ode_u[i]:= diff(u[i](t),t$2)+I*(list1[i][2]+list2[i][2])*diff(u[i](t),t)-list1[1][2]*list2[2][2]*u[i](t)=0;

eta is in fourier space where k values are in list1[i][1].

We laso know that f(-k)= - f*(k) where f=list[i][2]

and u[i] as function of k, initially has a Gaussian shape at t=0 in fourier space..

Thanks in advance for your help

Good day. 

I have been looking into the time series features in Maple and was eager to apply the models to one specific example containing 47 data points (attached).

When I run the ESM routine, Maple provides a forecast based on a (A,N,N) configuration. You will notice that the forecast for the following 12 data points is a constant value. I have also noticed this for several other data set examples and I would have expected the predictions to vary across the next 12 data points.

Does the (A,N,N) configuration in Maple automatically provide an optimal forecast and can anyone advise me on how to specify all possible combinations of (error, trend, season) models?

Thanks you for reading.

MaplePrimes_TS_Example.mw


Hi !

Looks like there is a bug in the inert "Diff" command.

I have Maple 2018 on Windows 10 ,64 bits.

Does Maple consider Diff(f(x),x) to be equal to Diff(f(x),[x]) ?

It should be the same.

Maple displays  that it is equal but keeps in memory something else.

In the attached file, I give a very simple example.

I don't like to say this but my old version of Maple V Release V (1997) is more consistent i.e.

this version shows it's different and  keeps in memory that difference.

diff-problem.mw

 

I wonder if newer versions have this problem ?


Best regards !

Hii!!

I need your help in state space system.... kindly guide me how to solve State Space system in maplesoft.....i excecute the command but i didn't find the answer....can you plz help me?I have been trying for two weeks now but it is not working.Thank you!!

How to plot this equation with explore or animation

E[1]:=Sum((GAMMA(((beta+1)n-gamma(nu-1))+k))/(GAMMA(((beta+1)n-gamma(nu-1)))*GAMMA(rho*k + (nu(1-mu)+mu(2 n+1))))*((omega*t^(p))^(k))/(k!),k=0..5);  E[2] :=Sum((GAMMA((gamma(n+1)-beta *n)+k))/(GAMMA((gamma(n+1)-beta *n))*GAMMA(rho*k + (mu(2 n+1))))*((omega*t^(p))^(k))/(k!),k=0..5);    y(p):=Sum(c*gamma^(n)*t^(nu*(1-mu)+mu+2*mu*n-1)*E[1]+gamma^(n)t^(mu(2 n+1)-1)*E[2]*g, n=0..5);

with the conditions

mu, nu \in (0, 1); omega \in R; rho > 0; gamma, beta > or = 0; c & g are constant

I want to arrange this equation in term of powers of x and then plot the  real and imagenery part of x vs y. How can I do this with Maple?
1-alpha*((1/x^2)+(1/(x-y)^2)+(1/(x+ay)^2))=0;

1.mw     (alpha and a are constant, for example alpha=1 and a=0.3)

I need help on maple code for solving both linear and non linear boudary condition for fractional order partial differential equation 

restart;
with(plots); with(LinearAlgebra);
_EnvHorizontalName := 'x';

_EnvVerticalName := 'y';

x1,y1,x2,y2,x3,y3:=0,-3,3,1,5,-2:   
A := [x1, y1]: B := [x2, y2]: C := [x3, y3]:

Barycentre := proc (A, B, t) description "Barycentre de 2 points A(1) et B(t) dans le rapport t";
return [(1-t)*A[1]+t*B[1], (1-t)*A[2]+t*B[2]] end proc;
ellip := proc (r1, r2) local a, b, c, d, e, f, D, E, F, eq1, eq2, eq3, eq4, eq5, eq6, x0, y0, EE, r3, sol, Ff, Tg;
global A, B, C;
r3 := -1/(r2*r1);
D := Barycentre(C, B, 1/(1-r1)); E := Barycentre(A, C, 1/(1-r2)); F := Barycentre(B, A, 1/(1-r3));
Ff := proc (x, y) options operator, arrow; a*x^2+2*b*x*y+c*y^2+2*d*x+2*e*y+f end proc;
Tg := proc (x0, y0, x, y) options operator, arrow; a*x*x0+b*(x*y0+y*x0)+c*y*y0+d*(x+x0)+e*(y+y0)+f end proc;
eq1 := Ff(D[1], D[2]);
eq2 := Ff(E[1], E[2]);
eq3 := Ff(F[1], F[2]);
eq4 := Tg(F[1], F[2], x1, y1);
eq5 := Tg(D[1], D[2], x2, y2);
eq6 := Tg(E[1], E[2], x3, y3);
sol := op(solve([eq1, eq2, eq3, eq4, eq5, eq6], [a, b, c, d, e]));
assign(sol);
EE := subs(f = 1, Ff(x, y) = 0) end proc;

ellip(-1, -7); tri := plot([A, B, C, A], color = blue):
 
po := plot([A, B, C], style = point, symbolsize = 15, symbol = solidcircle, color = red);
tp := textplot([[A[], "A"], [B[], "B"], [C[], "C"]], 'align' = {'above', 'left'});
x := 'x'; y := 'y';
ELL := seq(implicitplot(ellip(-7/11-(1/11)*j, -1/17-3*j*(1/17)), x = 0 .. 5, y = -3 .. 1, color = ColorTools:-Color([rand()/10^12, rand()/10^12, rand()/10^12])), j = 1 .. 17);
display([tri, ELL, po, tp], view = [-.5 .. 5.5, -4 .. 1.5], axes = none, scaling = constrained, size = [500, 500]);
Explore(implicitplot(ellip(r1, r2), x = 0 .. 5, y = -3 .. 1), parameters = [r1 = -2.18 .. -.7, r2 = -3 .. -.23]);
Can you tell me why this last instruction does't work ? Thank you.
 

We consider a triangle ABC, its circumscribed circle (O), of radius R, its inscribed circle (I) of centre I. We designate by α, β, γ the points of contact of BC, CA, AB with the circle (I), by A', B', C' the points of meeting other than A, B, C, of AI, BI, CI with the circle (O), by the media of BC, CA, AB.
.Establish that there is a conic (E), focus I, tangent to βγ, γα, αβ.
My code : 

restart;
with(geometry);
with(plots); _local(gamma);
_EnvHorizontalName := x; _EnvVerticalName := y;
alias(coor = coordinates);
point(A, -5, -5); point(B, 7, -1); point(C, 1, 5);
triangle(ABC, [A, B, C]); circumcircle(_O, ABC, 'centername' = OO); incircle(_I, ABC, 'centername' = Io);
line(lBC, [B, C]); sol := solve({Equation(_I), Equation(lBC)}, {x, y}); point(alpha, subs(sol, x), subs(sol, y));
line(lCA, [C, A]); sol := solve({Equation(_I), Equation(lCA)}, {x, y}); point(beta, subs(sol, x), subs(sol, y));
line(lAB, [A, B]); sol := solve({Equation(_I), Equation(lAB)}, {x, y}); point(gamma, subs(sol, x), subs(sol, y));
line(lAO, [A, OO]); intersection(Ap, lAO, lBC);
line(lBO, [B, OO]); intersection(Bp, lBO, lCA);
line(lCO, [C, OO]); intersection(Cp, lCO, lAB);
midpoint(l, B, C); midpoint(m, A, C); midpoint(n, A, B);
triangle(T, [alpha, beta, gamma]);
dr := draw([ABC(color = blue), _O(color = red), _I(color = magenta), lAO(color = black), lBO(color = black), lCO(color = black), T(color = red), alpha, beta, gamma, Ap, Bp, Cp, l, m, n], printtext = true);
display([dr], axes = normal, scaling = constrained, size = [800, 800]);
How to find the Equation of (E); Thank you.

We give a line (D) and a point A located at a distance AH=h from D. A constant angle of magnitude alpha pivots to its apex A and we call B and C the points where its sides cut the line D. Let O be the center of the circle circumscribed to the triangle ABC.
Demonstrate that the B and C tangents to the O circle keep a fixed direction. 
Here is my code which don't work for slopes are not equal.

restart; with(plots): with(geometry):unprotect(D):
_EnvHorizontalName := 'x':_EnvVerticalName := 'y':
line(D, y = (1/2)*x-1); point(A, 5, 5); PerpendicularLine(lp, A, D); h := distance(A, D); intersection(H, D, lp);
alpha := (1/16)*Pi;
rotation(lp1, lp, (1/6)*Pi, 'clockwise', A); rotation(lp2, lp1, (1/6)*Pi-alpha, 'clockwise', A); FindAngle(lp1, lp2); evalf(%);
intersection(B, D, lp1); intersection(C, D, lp2);
triangle(T, [A, B, C]);
circumcircle(Elc, T, 'centername' = OO);
TangentLine(tgB, B, Elc); TangentLine(tgC, C, Elc);
evalf(slope(tgB)); evalf(slope(tgC));
dr := draw([D(color = blue), lp(color = red), Elc(color = green), A, B, C, T(color = black), H, tgB, tgC], printtext = true);

display([dr], axes = none, scaling = constrained);
Fig := proc (k) local dr, Elc, B, C, lp1, lp2; global D, A, lp, H, alpha; geometry:-rotation(lp1, lp, (1/6)*Pi+k, 'clockwise', A); geometry:-rotation(lp2, lp1, (1/6)*Pi-alpha+k, 'clockwise', A); geometry:-intersection(B, D, lp1); geometry:-intersection(C, D, lp2); geometry:-triangle(T, [A, B, C]); geometry:-circumcircle(Elc, T, 'centername' = OO); geometry:-TangentLine(tgB, B, Elc); geometry:-TangentLine(tgC, C, Elc); dr := geometry:-draw([D(color = blue), lp(color = red), Elc(color = green), A, B, C, T(color = black), H, tgB, tgC], printtext = true); plots:-display([dr], axes = none, scaling = constrained) end proc;
iframes := 10;

display([seq(Fig((1/12)*Pi+i/(10*iframes)), i = 1 .. iframes)], insequence, scaling = constrained);
How to improve this code ? Thank you.

Eq=z"(t)+3z'(t)+2z(t)=24*(exp(-3t)-exp(-4t)) how to find the gereral solution of this equation. Thank you.

Hi, my problem is the next differential equation:

In maple. I used this code to solved it, but throws this error:

dsolve({diff(y(x), x, x) = -P*x/(I*E), eval(y(x), x = L) = 0, eval((D(y))(x), x = L) = 0});
Error, (in dsolve) found differentiated functions with same name but depending on different arguments in the given DE system: {y(L), y(x)}

What is the problem with my code? How can solve my ODE with tis boundary conditions? 

 

 

1 2 3 4 5 6 7 Last Page 2 of 61