Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

I know that, tetrahedron with vertices (0, 0, 0), (3, 0, 0), (0, 5, 0), (0, 0, 14) has center of insphere is  (1, 1, 1) and radius R = 1. How to create a tetrahedron whose coordinates of all vertices are integers, the inscribed spherical center and the inscribed spherical radius are integers?

restart; _local(D); A := [-L, 0]; B := [L, 0]; C := [x, y]; D := [-x, y]; Dist := proc (X, Y) options operator, arrow; sqrt((X[1]-Y[1])^2+(X[2]-Y[2])^2) end proc; Eq := (Dist(C, D) = Dist(C, B))^2; centre := [solve(diff(Eq, x), x), solve(diff(Eq, y), y)]; with(geometry); `assuming`([conic(p, Eq, [x, y])], [L > 0]); detail(p); asymptotes(p); y_acymp := `~`[solve](`~`[Equation](asymptotes(p)), y); y := solve(Eq, y)[1] P := proc (X, L0) local Curve, Asymptote, Trapezoid, T, pt, Ip; Curve := plot(eval([y, -y], L = L0), x = -(1/3)*L0 .. 15, color = red, thickness = 3); Asymptote := plot(eval([-sqrt(3)*x-(1/3)*sqrt(3)*L, sqrt(3)*x+(1/3)*sqrt(3)*L], L = L0), x = -(1/3)*L0 .. 15, linestyle = 3, color = black, thickness = 0); Trapezoid := plottools:-polygon(eval([A, B, C, D], [L = L0, x = X]), color = "LightGreen"); Ip := (1/3)*(eval(C, [x = X-(1/3)*L0, L = L0])); #centre of gravity of ABC T := plots:-textplot([[(eval(A, [x = X, L = L0]))[], "A"], [(eval(B, [x = X, L = L0]))[], "B"], [(eval(C, [x = X, L = L0]))[], "C"], [(eval(D, [x = X, L = L0]))[], "D"], [Ip[], "I"]], align = {above, left}, font = [TIMES, 16]); pt := plot([A, B, C, Ip], style = plottools:-point, color = blue, symbolsize = 15); plots:-display(Curve, Asymptote, Trapezoid, T, pt, scaling = constrained, size = [400, 800]) end proc; a := 7; P((1/2)*a, 6) I would like of location of centre of gravity of ABC. Thank you.

This  is a question from https://mathematica.stackexchange.com/questions/239055/how-to-reduce-the-time-to-solve-this-system-of-equations. How to reduce the time in Maple?
 

  {x, y, z, a, b, m, n} /. Solve[{1/x + 1/y == 1/z, a/x  + b/y == m/n, 2 <= x <= 30, 2 <= y <= 30, 1 <= z <= 30, 2 <= a <= 10, 2 <= b <= 10, a > b, 2 <= m <= 10, 2 <= n <= 10, x > y, GCD[m, n] == 1, GCD[a, b, m] == 1, m <= n}, {x, y, z, a, b, m, n}, Integers]

I am trying to find one option so that  a sphere is tangent with every edge of a tetrahedron. Suppose tetrahedron OABC, here O(0,0,0), A(x1, y1, z1), B(x2, y2, z2), and C(x3, y3, z3).  How to find a sphere is tangent with every edge of a tetrahedron?

I know how to contruct an isoscele ABCD trapeze knowing the 2L length of AB and BC=CD=CD=a. But I don't know answer to that question : L being fixed together with points A and B , show that the place of C when a varies is a branch of hyberbola. Here is my code.

restart; unprotect(O, D);
with(plots):
Vdot := proc (U, V) add(U[i]*V[i], i = 1 .. 2) end:
dist := proc (M, N) sqrt(Vdot(expand(M-N), expand(M-N))) end:
_EnvHorizontalName := x: _EnvVerticalName := y:
O:=[0,0]:A:=[-L,0]:alpha:=arccos((2*L-a)^2/(2*a*(2*L-a))):h:=tan(alpha)*(2*L-a)/2:
B:=[L,0]:C:=[L-(2*L-a)/2,h]:D:=[-L+(2*L-a)/2,h]:
L := 6; a := 7;
poly := [A, B, C, D, A];tp := textplot([[A[], "A"], [B[], "B"], [C[], "C"], [D[], "D"]], color = black, 'align' = {'above', 'right'});
trapeze := polygonplot(poly, axes = normal, color = "DarkGreen", transparency = .9);
display([tp, trapeze], scaling = constrained); Thank you foryour help.

We consider an ellipse  E defined by the equation x²/a²+y²/b²=1. Either F1 and F2 its foci. 
We consider a point M of E  such the angle F1,M,F2 is equal to a given value phi.
Find F1M et F2M in function of a, b and phi . Then find the coordiinates x0 and y0 of M in function of a, b, and phi. Here is the begining of my code;

restart;
_EnvHorizontalName := x: _EnvVerticalName := y:
with(plots):
line := proc (x1, y1, x2, y2) options operator, arrow; (x-x1)*(y2-y1)-(y-y1)*(x2-x1) end proc:
Vdot := proc (U, V) add(U[i]*V[i], i = 1 .. 2) end proc:
dist := proc (M, N) sqrt(Vdot(expand(M-N), expand(M-N))) end proc:

ell := x^2/a^2+y^2/b^2 = 1: 
c := sqrt(a^2-b^2):
F1 := [c, 0]: F2 := [-c, 0]:
M := [a*cos(t), b*sin(t)]:
MF2 := simplify(expand(sqrt((c+a*cos(t))^2+(b*sin(t))^2)));
MF1 := simplify(expand(sqrt((c-a*cos(t))^2+(b*sin(t))^2)));
varphi := arccos((MF1^2+MF2^2-4*c^2)/(2*MF1*MF2));
f := unapply(varphi, t);
`max&varphi;` := f((1/2)*Pi);
diff(f(t), t);

a := 7: b := 5: t := (1/3)*Pi:
evalf(varphi);
evalf(MF1); evalf(dist(M, F1));
evalf(MF2); evalf(dist(M, F2));
MF1+MF2; evalf(%);
`max&varphi;`; evalf(%);
ELL := implicitplot(ell, x = -a-2 .. a+2, y = -2-b .. b+2, color = blue):
tp := textplot([[F1[], "F1"],[F2[],"F2"],[M[],"M"]], 'align' = {'above', 'left'}):
po := plot([F1,F2, M], style = point, symbolsize = 15, symbol = solidcircle, color = red):

display([ELL, tp, po], scaling = constrained): Would  you help me to answer the questions ? Thank you.

Hi. i have a nonlinear integral equation. any idea for solving it? tnx in advance

integral-equation.mw

 

How to simplify this trigonometric expression with Maple? I only know the way with  identify command, which is difficult to call mathematically correct:

restart;
Expr:=arctan((1-tan(20*Pi/180))/(1-tan(25*Pi/180)));
evalf[15](Expr);
identify(%);

                           

        

 

Hello. Please help me find the value of the integral.

Integral.mw

How to write names on an drawing P1, P2, P3, Pn... I try
textplot({seq([(coordinates(point(P[i]))), cat("P", i)], i = 0 .. 5)}, 'align' = {'above', 'left'}):;
i got the message : wrong number of arguments that i don't how correct. Thank you.

restart; with(plots):unprotect(gamma):
_EnvHorizontalName := 'x';_EnvVerticalName := 'y';
line := proc (x1, y1, x2, y2) options operator, arrow; (x-x1)*(y2-y1)-(y-y1)*(x2-x1) end proc:
R := 3:
ang := [0, (1/3)*Pi, 3*Pi*(1/4)+.2, 7*Pi*(1/6)+.4, 8*Pi*(1/5), 13*Pi*(1/7)]:
for i to 6 do P || i := [R*cos(ang[i]), R*sin(ang[i])] end do:
pts := [seq(P || i, i = 1 .. 6)]:
for i to 6 do tang || i := x*P || i[1]+y*P || i[2] = R^2 end do:
sol:=solve({tang1,tang3},{x,y}):Q13:=[subs(sol,x),subs(sol,y)]:
sol := solve({tang1, tang2}, {x, y}): Q1 := [subs(sol, x), subs(sol, y)]:
sol := solve({tang2, tang3}, {x, y}): Q2 := [subs(sol, x), subs(sol, y)]:
sol := solve({tang3, tang4}, {x, y}): Q3 := [subs(sol, x), subs(sol, y)]:
sol := solve({tang4, tang5}, {x, y}): Q4 := [subs(sol, x), subs(sol, y)]:
sol := solve({tang5, tang6}, {x, y}): Q5 := [subs(sol, x), subs(sol, y)]:
sol := solve({tang1, tang6}, {x, y}): Q6 := [subs(sol, x), subs(sol, y)]:
ptQ := [seq(Q || i, i = 1 .. 6)]:
line14 := line(Q1[1], Q1[2], Q4[1], Q4[2]): L14 := implicitplot(line14, x = -10 .. 10, y = -10 .. 10, color = red):
line25 := line(Q2[1], Q2[2], Q5[1], Q5[2]): L25 := implicitplot(line25, x = -10 .. 10, y = -10 .. 10, color = red):
line36 := line(Q3[1], Q3[2], Q6[1], Q6[2]): L36 := implicitplot(line36, x = -10 .. 10, y = -10 .. 10, color = red):
sol := solve({line14, line25}, {x, y}): I1 := [subs(sol, x), subs(sol, y)]:

lineP23 := line(P2[1], P2[2], P3[1], P3[2]): lineP56 := line(P5[1], P5[2], P6[1], P6[2]):
sol := solve({lineP23, lineP56}, {x, y}): gamma := [subs(sol, x), subs(sol, y)]:
lineP12 := line(P1[1], P1[2], P2[1], P2[2]): lineP45 := line(P4[1], P4[2], P5[1], P5[2]):
sol := solve({lineP12, lineP45}, {x, y}): beta := [subs(sol, x), subs(sol, y)]:
lineP34 := line(P3[1], P3[2], P4[1], P4[2]): lineP16 := line(P1[1], P1[2], P6[1], P6[2]):
sol := solve({lineP16, lineP34}, {x, y}): alpha := [subs(sol, x), subs(sol, y)]:
pl:= line(alpha[1], alpha[2], gamma[1], gamma[2]):
hexa := seq(implicitplot(tang||i, x = -20 .. 20, y = -20 .. 20, linestyle=3,color = blue),i=1..6):
#hexa:=plot([seq([P||i,P||(i mod 6)+1],i=1..6),color=green): 
#hexa:=plot([seq([P||i,P||(i+1)],i=1..6)],thickness=4,color=green): 
hex:=plot([[Q1,Q2],[Q2,Q3],[Q3,Q4],[Q4,Q5],[Q5,Q6],[Q6,Q1]],thickness=4,color=green):
tp := textplot({seq([op(pts[i]), cat("P", i)], i = 1 .. 6)}, 'align' = {'above', 'left'}):
tpq := textplot({seq([op(ptQ[i]), cat("Q", i)], i = 1 .. 6)}, 'align' = {'above', 'left'}):
TP:=textplot([[I1[],"I"],[alpha[],"alpha"],[beta[],"beta"],[gamma[],"gamma"]],'align' = {'above', 'left'}):
slopes:=[seq(((dx,dy)->dy/dx)((pts[i]-pts[(i mod 6)+1])[]),i=1..6)]:
lines:=zip((pt,slope)->y=slope*(x-pt[1])+pt[2],pts,slopes):
plotpts:=plot(pts,style=point,colour=red,symbol=solidcircle,symbolsize=5):
plotptQ:=plot(ptQ,style=point,colour=black,symbol=solidcircle,symbolsize=5):
plotlines:=plot(rhs~(lines),style=line,linestyle=3,colour=magenta):
cir:=implicitplot(x^2+y^2=R^2,x=-R..R,y=-R..R,color=black):
PL:=implicitplot(pl,x=-1..15,y=-15..6,color=blue,thickness=3):
display(plotpts,plotptQ,plotlines,hex,cir,L14,L25,L36,PL,tp,tpq,TP,axis = [gridlines = [4, color = blue]],
view=[-6..10,-15..6],scaling=constrained,axes=none,size=[800,800]):
How to simplify this program ? Thank you.

Hello. I have certain requirements for drawings. Please tell me, is it possible to implement them when plotting in Maple? Thanks.
Drawing width 15 cm
Be sure to frame and mesh. The thickness of the frame and serifs on the axes is 0.5 pt. Mesh thickness 0.25 pt. The length of the serifs is 1.2 mm.
The thickness of the graph itself is 1 pt
Axis names 10 pt

How to show that the function z0(t)=t²+exp(-t)  is solution of z"(t)+2z'(t)+z(t)=2exp(-t); Thank you.

Hello. Tell me, please, is it possible to somehow remove the labels on the axes in Maple when plotting graphs? I mean labels 1, 2, 3 and so on. Thank you for your help.

If the equation with homogeous coordinates in the base (A,B,C) is pYZ+qZX+rXY=0, an affine  equation in the base (A,AB,AC) is
pxy+qy(1-x-y)+r(1-x-y)=0, it is also written rx²+(q+r-p)xy+qy²=0. The discrim of  trinom is rx²+(q+r-p)xy+qy² is of the sign of 
delta=(q+r-p)²-4qr; We get a hyperbole, a parabole, an ellipse according to delta is >0, =0 or <0 respectvely. How implement
this property. Thank you very much.

First 8 9 10 11 12 13 14 Last Page 10 of 61