Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

Hello, i am experiencing some problems when trying to open the maple 2018 software*
I have tried unistalling and download it again.
I have tried to search for sollution but there is very ittle intel
When i open Maple 2018 it just lingeres on the start up (pic below) and just disappears after 10 seconds

Can someone please help i have a very important examination upcoming

restart;
F0:=proc(sigma__xx,N)
local  x,y,Fx,Fy,:
assume (w,real,w>0):assume (h,real,h>0):

for n from 0 by 2 to N do Fx:=integrate(sigma__xx*cos(w*Zeta*h),Zeta=0..infinity):
end do;
for n from 1 by 2 to N do Fx:=integrate(sigma__xx*sin(w*Zeta*h),Zeta=0..infinity):
end do;
return [Fx]:
end proc;

sigma__xx := -(sqrt(Zeta^2*h^2+h^2)^(-n+2)*cos(n*arctan(h, Zeta*h))*n^2+sqrt(Zeta^2*h^2+h^2)^(-n+2)*cos(n*arctan(h, Zeta*h))*n-2*sqrt(Zeta^2*h^2+h^2)^(-n+2)*cos(n*arctan(h, Zeta*h)))*Zeta^2*h^2/(Zeta^2*h^2+h^2)^2+(sqrt(Zeta^2*h^2+h^2)^(-n+2)*cos(n*arctan(h, Zeta*h))*n^2-3*sqrt(Zeta^2*h^2+h^2)^(-n+2)*cos(n*arctan(h, Zeta*h))*n;

F0(sigma__xx,N);

Hello everyone,

I am a studen and have an astrophysics class where I programmed a basic space probe to go from a planet A to a Planet B.

I have a 2D grap and a 3D graph already done however I would like to animate them.

I have included both a picture and my whole program. Also see some code below. 

Thanks to all.

 

Download SondeII_(1).mwSondeII_(1).mwSondeII_(1).mw

restart:

with(linalg):
with(DEtools):

#Sonde
Position := [x(t), y(t)]:

#Terre
omega1 :=2*Pi:
r1 := [cos(omega1*t), sin(omega1*t)]:
x1(t) := innerprod([1, 0], r1):
y1(t) := innerprod([0, 1], r1):

#Mars
omega2 := sqrt(2)*Pi/2:
phi2 := Pi/2:
r2 := [2*cos(omega2*t + phi2), 2*sin(omega2*t+ phi2)]:
x2(t):= innerprod([1, 0], r2):
y2(t):= innerprod([0, 1], r2):

#Les couplages gravitationnelles (masse).
c1 := 1.0:
c2 := 0.2:
c0 := 100:

#Les forces appliqués sur la sonde
ForceGravitationnelle1 := -c1*(Position-r1)/(sqrt((x(t)-x1(t))^2+(y(t)-y1(t))^2))^3:
ForceGravitationnelle2 := -c2*(Position-r2)/(sqrt((x(t)-x2(t))^2+(y(t)-y2(t))^2))^3:
ForceGravitationnelle0 := -c0*(Position)/(sqrt((x(t))^2+(y(t))^2))^3:

#La somme des forces.
Force := ForceGravitationnelle1 + ForceGravitationnelle2 + ForceGravitationnelle0:

Fx := innerprod([1, 0], Force):
Fy := innerprod([0, 1], Force):

#L'interval de temps.
TempsInit := 0:
TempsFinal := 3:

#Les équations différentielles de deuxieme ordre.
eq1x := (D(D(x)))(t) = Fx:
eq1y := (D(D(y)))(t) = Fy:

#Les conditions initiales..
phi0 :=(Pi)/2:
V0 := 12.946802:
x0 := 1:
y0 := 0.1:
Vx0 := V0*cos(phi0):
Vy0 := V0*sin(phi0):

ConditionsInit := x(0) = x0, y(0) = y0, D(x)(0) = Vx0, D(y)(0) = Vy0:

#La trajectoire de la sonde.
Trajectoire := dsolve({eq1x, eq1y, ConditionsInit}, {x(t), y(t)}, numeric, range = TempsInit..TempsFinal, maxfun=0):

#Tracage du graphique de la trajectoire en 2D
plots[odeplot](Trajectoire, [[0,0],[x1(t),y1(t)],[x2(t), y2(t)], [x(t), y(t)]],
TempsInit..TempsFinal, numpoints = 1000, axes = boxed, scaling = constrained, thickness = [2],
color = ["Black", "Green", "Blue", "Red"],
labels = ["X (L)", "Y (L)"],
labelfont = ["Times", 14], title = "Mouvement de la sonde dans le plan",
titlefont = ["Helvetica", 14], style=[point,line,line,line], symbol = solidcircle);

#Tracage du graphique en 3D:
plots[odeplot](Trajectoire, [[0,0,t],[x1(t),y1(t), t],[x2(t), y2(t), t], [x(t), y(t), t]],
TempsInit..TempsFinal, numpoints = 1000, axes = boxed, scaling = constrained, thickness = [3],
color = ["Black", "Green", "Blue", "Red"],
labels = ["X (L)", "Y (L)", "t"],
labelfont = ["Times", 14], title = "Mouvement de la sonde dans le plan",
titlefont = ["Helvetica", 14], style=[point,line,line,line], symbol = solidcircle);
 

 

 

 

 

 


 

Hello,

How I can take Laplace inverse?

Thank you

LAPLACE

Maple Worksheet - Error

Failed to load the worksheet //convert/LAPLACE
 

Download LAPLACE

 

Give the following functions find Domain, Range, Possible Asymptotes, Intercepts, Critical Points, Intervals of Increase, Decrease, Relative and Absolute Extrema, and Concavity.

A) f(x)=x(x^2-6x+8)

B) f(x) =x^3/4 -3x

After two days of trying to take the Jacobian of a multi-variable mapping in Maple, I'm still finding no way. Here is an example of what I mean by "multi-variable mapping":

(x,y) -> x^2-y^2

Every AP high-school student knows how to take the partial derivatives of that, but Maple's "Jacobian" feature doesn't work on mappings. It only works on expressions.

So I spent today trying to leverage off the "D" feature, only to find it rendered useless by bugs: https://mapleprimes.com/questions/227007-How-To-Take-Partial-Derivative-Of-A-Mapping

It took me less than two days to do it in Mathematica, by way of comparison.

On the website, they show a photo of a man elated to be doing math in Maple, but that's not how it's gone for me. I'm cursing outloud, and my blood pressure is high. I'm angry that I lost money on a product that can't take the Jacobian of a mapping, and I'm angry that I lost two days of my life doing tedious debugging while paying money instead of getting paid for my work.

Maple pays math PhD's to release a commercial CAS that can't take the Jacobian of a mapping. So much for the value of a PhD.

I need to find the intersection of 3 planes.

x+3*y-5*z=0
x+4*y-8*z=0
-2*x-7*y+13*z=0

I managed to get the intersection using LinearSolve but I keep getting an error when I try to plot out the planes using plot3d. What can I change in the commands for it to work?
 

with(LinearAlgebra)

[`&x`, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, BidiagonalForm, BilinearForm, CARE, CharacteristicMatrix, CharacteristicPolynomial, Column, ColumnDimension, ColumnOperation, ColumnSpace, CompanionMatrix, CompressedSparseForm, ConditionNumber, ConstantMatrix, ConstantVector, Copy, CreatePermutation, CrossProduct, DARE, DeleteColumn, DeleteRow, Determinant, Diagonal, DiagonalMatrix, Dimension, Dimensions, DotProduct, EigenConditionNumbers, Eigenvalues, Eigenvectors, Equal, ForwardSubstitute, FrobeniusForm, FromCompressedSparseForm, FromSplitForm, GaussianElimination, GenerateEquations, GenerateMatrix, Generic, GetResultDataType, GetResultShape, GivensRotationMatrix, GramSchmidt, HankelMatrix, HermiteForm, HermitianTranspose, HessenbergForm, HilbertMatrix, HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDefinite, IsOrthogonal, IsSimilar, IsUnitary, JordanBlockMatrix, JordanForm, KroneckerProduct, LA_Main, LUDecomposition, LeastSquares, LinearSolve, LyapunovSolve, Map, Map2, MatrixAdd, MatrixExponential, MatrixFunction, MatrixInverse, MatrixMatrixMultiply, MatrixNorm, MatrixPower, MatrixScalarMultiply, MatrixVectorMultiply, MinimalPolynomial, Minor, Modular, Multiply, NoUserValue, Norm, Normalize, NullSpace, OuterProductMatrix, Permanent, Pivot, PopovForm, ProjectionMatrix, QRDecomposition, RandomMatrix, RandomVector, Rank, RationalCanonicalForm, ReducedRowEchelonForm, Row, RowDimension, RowOperation, RowSpace, ScalarMatrix, ScalarMultiply, ScalarVector, SchurForm, SingularValues, SmithForm, SplitForm, StronglyConnectedBlocks, SubMatrix, SubVector, SumBasis, SylvesterMatrix, SylvesterSolve, ToeplitzMatrix, Trace, Transpose, TridiagonalForm, UnitVector, VandermondeMatrix, VectorAdd, VectorAngle, VectorMatrixMultiply, VectorNorm, VectorScalarMultiply, ZeroMatrix, ZeroVector, Zip]

(1)

A := `<|>`(`<,>`(1, 1, -2), `<,>`(3, 4, -7), `<,>`(-5, -8, 13))

Matrix(%id = 18446745896624469046)

(2)

b := `<,>`(0, 0, 0)

Vector[column](%id = 18446745896624462294)

(3)

x := LinearSolve(A, b)

Vector[column](%id = 18446745896652349678)

(4)

P1 := x+3*y

P2 := x+4*y

P3 := -2*x-7*y

plot3d([P1, P2, P3], x = -8 .. 8, y = -20 .. 20, plotlist = true, color = [blue, red, green])

Error, (in plot3d) unexpected options: [(Vector(3, {(1) = -4*_t[3], (2) = 3*_t[3], (3) = _t[3]})) = -8 .. 8, y = -20 .. 20]

 

``


 

Download problem.mw

Here's how to break Maple's 'D' function:

~$ cmaple mapleBug.mpl
    |\^/|     Maple 2018 (X86 64 WINDOWS)
._|\|   |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2018
 \  MAPLE  /  All rights reserved. Maple is a trademark of
 <____ ____>  Waterloo Maple Inc.
      |       Type ? for help.
> D[1]((x, y) ->x^2-y^2);
                                 (x, y) -> 2 x

> D[2]((x, y) ->x^2-y^2);
                                 (x, y) -> -2 y

> with(VectorCalculus):
> assume(x, 'real');
> assume(y, 'real');
> D[1]((x, y) ->x^2-y^2);
                                  (x, y) -> 0

> D[2]((x, y) ->x^2-y^2);
                                  (x, y) -> 0

> quit
memory used=2.4MB, alloc=8.3MB, time=0.06

~$

What if a person needs to have these lines:

> with(VectorCalculus):
> assume(x, 'real');
> assume(y, 'real');

and then he wants to take partial derivatives? Not possible? Once you load VectorCalculus and declare x and y real, Maple stops doing partial derivatives? Why.

Sorry,

I have been away from Maple for a year.
Then, when I used op command, I am puzzed to notice the results were different from those I know.

>op((x+5)^2*(x+y));
      _EXPSEQ((x+5)^2, x+y)

Result I know is 

        (x+5)^2, x+y

Has a modifire such as _EXPSEQ   automatically come to be attatched?
Or, can I have maple express it  in the form I know:  (x+5)^2, x+y?

Thank you in advance.

taro

 

 

 

 

 


 

Given the following functions and respective intervals graph them and determine all values of in the interval (a,b) such that

f'(c) =f(b)-f(a)/b-a (apply the Mean Value Theorem) 

 Question 1: f(x)=x^3-2*x      [0,2]

 Question 2 : g(x)= cuberoot(x-3)^2     [-3,4]

 

Please HELP!!! 

 

how I can write a program code for newmark method.

in this method time has 3 order derivation

 We know the following facts: 

The SequenceGraph command returns a graph with the specified degree sequence given as input, if such a graph exists. It raises an exception otherwise. 
 But  If I  want to get more graphs  that satisfy this condition of degree sequence ? (If graphs are not many ,I want get all graphs better)
what should I do.?
For example: DrawGraph(SequenceGraph([3, 2, 2, 1, 1, 1]));  It returns the first graph below, but it is obvious that the second graph also fits the condition.

squenceGraph.mw

Hello Dear,

I have the following equation

 This equation is satisfied if the coefficients are zero.

So I need an order in Maple to write that

 

 

Good morning everyone, 

I have a problem, when I try to evaluate the definite integral below, Maple can not provide a result. What can I do so that the Maple can calculate this integral?

This is the Maple code with the result:

 

 

restart

with(VectorCalculus):

with(LinearAlgebra):

with(CodeGeneration):

N := 1:

M := 2:

``

for i to N do rpv1 || i := 0; rpv2 || i := 0; rpv3 || i := 0; for j to M do rpv1 || i := VectorCalculus:-`+`(rpv1 || i, Typesetting:-delayDotProduct(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), Phi || i || j)); rpv2 || i := VectorCalculus:-`+`(rpv2 || i, Typesetting:-delayDotProduct(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), `&varphi;` || i || j)); rpv3 || i := VectorCalculus:-`+`(rpv3 || i, Typesetting:-delayDotProduct(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), gamma || i || j)) end do; rp || i := Matrix([[rpv1 || i], [rpv2 || i], [rpv3 || i]]) end do:

``

for i to N do rppv1 || i := 0; rppv2 || i := 0; rppv3 || i := 0; for j to M do rppv1 || i := VectorCalculus:-`+`(rppv1 || i, Typesetting:-delayDotProduct(diff(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), s), Phi || i || j)); rppv2 || i := VectorCalculus:-`+`(rppv2 || i, Typesetting:-delayDotProduct(diff(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), s), `&varphi;` || i || j)); rppv3 || i := VectorCalculus:-`+`(rppv3 || i, Typesetting:-delayDotProduct(diff(diff(VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^j, s), s), gamma || i || j)) end do; rpp || i := Matrix([[rppv1 || i], [rppv2 || i], [rppv3 || i]]) end do:

``

``

for i to N do for j from 0 to 0 do U || i || j := 0 end do end do:

for i to N do for j from 0 to 0 do V || i || j := 0 end do end do:

for i to N do for j from 0 to 0 do W || i || j := 0 end do end do:

for i to N do for j from 0 to VectorCalculus:-`+`(M, -2) do U || i || (VectorCalculus:-`+`(j, 1)) := VectorCalculus:-`+`(U || i || j, VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^VectorCalculus:-`+`(j, 1)) end do end do:

for i to N do for j from 0 to VectorCalculus:-`+`(M, -2) do V || i || (VectorCalculus:-`+`(j, 1)) := VectorCalculus:-`+`(V || i || j, VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^VectorCalculus:-`+`(j, 1)) end do end do:

for i to N do for j from 0 to VectorCalculus:-`+`(M, -2) do W || i || (VectorCalculus:-`+`(j, 1)) := VectorCalculus:-`+`(W || i || j, VectorCalculus:-`*`(VectorCalculus:-`+`(s, VectorCalculus:-`-`(xi || i)), 1/L || i)^VectorCalculus:-`+`(j, 1)) end do end do:

for i to N do f || i := VectorCalculus:-`+`(Typesetting:-delayDotProduct(VectorCalculus:-`*`(Typesetting:-delayDotProduct(E, A), 1/mu), VectorCalculus:-`+`(VectorCalculus:-`+`(rpp || i, VectorCalculus:-`-`(VectorCalculus:-`*`(rpp || i, 1/evalc(norm(Re(rp || i), 2))))), VectorCalculus:-`*`(Typesetting:-delayDotProduct(rp || i, Typesetting:-delayDotProduct(rp || i^%T, rpp || i)), 1/evalc(norm(Re(rp || i), 2))^3))), Typesetting:-delayDotProduct(g, e3)) end do:

for i to N do for j to VectorCalculus:-`+`(M, -1) do fun || i || j := int(VectorCalculus:-`*`(U || i || j, Row(f || i, 1)), s = xi || i .. L || i) end do end do;

fun11

(int((s-xi1)*(E*A*(2*Phi12/L1^2-2*Phi12/(sqrt((gamma11/L1+2*gamma12*s/L1^2-2*gamma12*xi1/L1^2)^2+(`&varphi;11`/L1+2*`&varphi;12`*s/L1^2-2*`&varphi;12`*xi1/L1^2)^2+(Phi11/L1+2*Phi12*s/L1^2-2*Phi12*xi1/L1^2)^2)*L1^2)+(Phi11/L1+(2*(s-xi1))*Phi12/L1^2)*((2*(Phi11/L1+(2*(s-xi1))*Phi12/L1^2))*Phi12/L1^2+(2*(`&varphi;11`/L1+(2*(s-xi1))*`&varphi;12`/L1^2))*`&varphi;12`/L1^2+(2*(gamma11/L1+(2*(s-xi1))*gamma12/L1^2))*gamma12/L1^2)/((gamma11/L1+2*gamma12*s/L1^2-2*gamma12*xi1/L1^2)^2+(`&varphi;11`/L1+2*`&varphi;12`*s/L1^2-2*`&varphi;12`*xi1/L1^2)^2+(Phi11/L1+2*Phi12*s/L1^2-2*Phi12*xi1/L1^2)^2)^(3/2))/mu+g*e3)/L1, s = xi1 .. L1))*e[x]

(1.1)

``

NULL

``


 

Download integral.mw

 

Thank you !

Hello,

What is the minimum period of the following equation.


 

d := evalf(expand((100+100*cos(6*t)+200*cos(12*sqrt(2)*t))^2))

40000.-2580480000.*cos(t)^2*cos(1.414213562*t)^6+604800000.*cos(t)^2*cos(1.414213562*t)^4-51840000.*cos(t)^2*cos(1.414213562*t)^2+2621440000.*cos(t)^6*cos(1.414213562*t)^12-7864320000.*cos(t)^6*cos(1.414213562*t)^10+8847360000.*cos(t)^6*cos(1.414213562*t)^8-4587520000.*cos(t)^6*cos(1.414213562*t)^6+1075200000.*cos(t)^6*cos(1.414213562*t)^4-92160000.*cos(t)^6*cos(1.414213562*t)^2-3932160000.*cos(t)^4*cos(1.414213562*t)^12+0.1179648000e11*cos(t)^4*cos(1.414213562*t)^10-0.1327104000e11*cos(t)^4*cos(1.414213562*t)^8+6881280000.*cos(t)^4*cos(1.414213562*t)^6-1612800000.*cos(t)^4*cos(1.414213562*t)^4+138240000.*cos(t)^4*cos(1.414213562*t)^2+1474560000.*cos(t)^2*cos(1.414213562*t)^12-4423680000.*cos(t)^2*cos(1.414213562*t)^10+4976640000.*cos(t)^2*cos(1.414213562*t)^8+720000.*cos(t)^2+274560000.*cos(1.414213562*t)^4-5125120000.*cos(1.414213562*t)^6+0.4942080000e11*cos(1.414213562*t)^8-0.2811494400e12*cos(1.414213562*t)^10+0.1013841920e13*cos(1.414213562*t)^12+0.1677721600e12*cos(1.414213562*t)^24-0.1006632960e13*cos(1.414213562*t)^22+0.2642411520e13*cos(1.414213562*t)^20-0.3984588800e13*cos(1.414213562*t)^18+0.3810263040e13*cos(1.414213562*t)^16-0.2406481920e13*cos(1.414213562*t)^14-5760000.*cos(1.414213562*t)^2+10240000.*cos(t)^12-30720000.*cos(t)^10+34560000.*cos(t)^8+1320000.*cos(t)^4-16000000.*cos(t)^6

(1)

``


 

Download period

 

 

First 26 27 28 29 30 31 32 Last Page 28 of 61