Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

Why doesn't Maple show a solution to the following odesys of second order and not show an error?
 

Differential Equations Trebuchet, Phase II_2020-06-05

 

restart; with(VariationalCalculus); with(PDETools)

[ConjugateEquation, Convex, EulerLagrange, Jacobi, Weierstrass]

(1)

r1_num := 8; r2_num := 8; r3_num := 1; h_num := 5; m2_num := 1; m3_num := 20; theta3_num := r3_num^2*m3_num; g_num := 10; phi1_num_null := -h_num/r1_num; epsilon_num_null := 0

0

(2)

T := (1/2)*m2*((diff(phi1(t), t))^2*r1^2-2*(diff(phi1(t), t))*(diff(`ε`(t), t))*r1*r2*sin(phi1(t)+`ε`(t))+(diff(`ε`(t), t))^2*r2^2)+(1/2)*m3*(r3^2*(diff(phi1(t), t))^2*sin(phi1(t))^2+r3^2*(diff(phi1(t), t))^2*cos(phi1(t))^2)

(1/2)*m2*((diff(phi1(t), t))^2*r1^2-2*(diff(phi1(t), t))*(diff(epsilon(t), t))*r1*r2*sin(phi1(t)+epsilon(t))+(diff(epsilon(t), t))^2*r2^2)+(1/2)*m3*(r3^2*(diff(phi1(t), t))^2*sin(phi1(t))^2+r3^2*(diff(phi1(t), t))^2*cos(phi1(t))^2)

(3)

NULL

U := m2*g*(r1*sin(phi1(t))+r2*cos(`ε`(t)))-m3*g*r3*sin(phi1(t))

m2*g*(r1*sin(phi1(t))+r2*cos(epsilon(t)))-m3*g*r3*sin(phi1(t))

(4)

L := T-U = 0

(1/2)*m2*((diff(phi1(t), t))^2*r1^2-2*(diff(phi1(t), t))*(diff(epsilon(t), t))*r1*r2*sin(phi1(t)+epsilon(t))+(diff(epsilon(t), t))^2*r2^2)+(1/2)*m3*(r3^2*(diff(phi1(t), t))^2*sin(phi1(t))^2+r3^2*(diff(phi1(t), t))^2*cos(phi1(t))^2)-m2*g*(r1*sin(phi1(t))+r2*cos(epsilon(t)))+m3*g*r3*sin(phi1(t)) = 0

(5)

L_num := subs(r1 = r1_num, r2 = r2_num, r3 = 1, h = h_num, m2 = m2_num, m3 = m3_num, theta3 = theta3_num, g = g_num, L); combine(%)

42*(diff(phi1(t), t))^2-64*(diff(phi1(t), t))*(diff(epsilon(t), t))*sin(phi1(t)+epsilon(t))+32*(diff(epsilon(t), t))^2+120*sin(phi1(t))-80*cos(epsilon(t)) = 0

(6)

 

deq_phi1_num := EulerLagrange(L_num, t, phi1(t)); hz1 := convert(deq_phi1_num, list); deq_phi1_num := op(1, hz1)

-64*(diff(phi1(t), t))*(D(epsilon))(t)*cos(phi1(t)+epsilon(t))+120*cos(phi1(t))-64*(diff(diff(phi1(t), t), t))+64*((D@@2)(epsilon))(t)*sin(phi1(t)+epsilon(t))+64*(D(epsilon))(t)*(diff(phi1(t), t)+diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))-20*(diff(diff(phi1(t), t), t))*sin(phi1(t))^2-20*(diff(diff(phi1(t), t), t))*cos(phi1(t))^2 = 0

(7)

``

deq_epsilon_num := EulerLagrange(L_num, t, epsilon(t)); hz2 := convert(deq_epsilon_num, list); deq_epsilon_num := op(1, hz2)

-64*(D(phi1))(t)*(diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))+80*sin(epsilon(t))+64*((D@@2)(phi1))(t)*sin(phi1(t)+epsilon(t))+64*(D(phi1))(t)*(diff(phi1(t), t)+diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))-64*(diff(diff(epsilon(t), t), t)) = 0

(8)

``

ode_sys := deq_phi1_num, deq_epsilon_num

-64*(diff(phi1(t), t))*(D(epsilon))(t)*cos(phi1(t)+epsilon(t))+120*cos(phi1(t))-64*(diff(diff(phi1(t), t), t))+64*((D@@2)(epsilon))(t)*sin(phi1(t)+epsilon(t))+64*(D(epsilon))(t)*(diff(phi1(t), t)+diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))-20*(diff(diff(phi1(t), t), t))*sin(phi1(t))^2-20*(diff(diff(phi1(t), t), t))*cos(phi1(t))^2 = 0, -64*(D(phi1))(t)*(diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))+80*sin(epsilon(t))+64*((D@@2)(phi1))(t)*sin(phi1(t)+epsilon(t))+64*(D(phi1))(t)*(diff(phi1(t), t)+diff(epsilon(t), t))*cos(phi1(t)+epsilon(t))-64*(diff(diff(epsilon(t), t), t)) = 0

(9)

NULL

ics := phi1(0) = phi1_num_null, (D(phi1))(0) = 0, epsilon(0) = epsilon_num_null, (D(epsilon))(0) = 0

phi1(0) = -5/8, (D(phi1))(0) = 0, epsilon(0) = 0, (D(epsilon))(0) = 0

(10)

infolevel := 5

5

(11)

sol_num := dsolve({ics, ode_sys}, {epsilon(t), phi1(t)}, numeric)

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 26, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..63, {(1) = 4, (2) = 4, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.3220560812572312e-2, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..4, {(1) = .0, (2) = .0, (3) = -.625, (4) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..4, {(1) = .1, (2) = .1, (3) = .1, (4) = .1}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0}, datatype = float[8], order = C_order), Array(1..4, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (4, 5) = .0, (4, 6) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = 0, (2) = 0, (3) = 0, (4) = 0}, datatype = integer[8]), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..8, {(1) = .0, (2) = .0, (3) = .0, (4) = .0, (5) = .0, (6) = .0, (7) = .0, (8) = .0}, datatype = float[8], order = C_order)]), ( 8 ) = ([Array(1..4, {(1) = .0, (2) = .0, (3) = -.625, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = -.917036362501732, (3) = .0, (4) = 1.567322913492791}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..4, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (3, 3) = .0, (3, 4) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (4, 3) = .0, (4, 4) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (5, 3) = .0, (5, 4) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0, (6, 3) = .0, (6, 4) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, X, Y, YP) option `[Y[1] = epsilon(t), Y[2] = diff(epsilon(t),t), Y[3] = phi1(t), Y[4] = diff(phi1(t),t)]`; YP[2] := (64*sin(Y[3]+Y[1])*(-64*Y[4]*Y[2]*cos(Y[3]+Y[1])+120*cos(Y[3])+64*Y[2]*(Y[4]+Y[2])*cos(Y[3]+Y[1]))-(-64*Y[4]*Y[2]*cos(Y[3]+Y[1])+80*sin(Y[1])+64*Y[4]*(Y[4]+Y[2])*cos(Y[3]+Y[1]))*(-20*cos(Y[3])^2-20*sin(Y[3])^2-64))/(1280*cos(Y[3])^2+1280*sin(Y[3])^2+4096-4096*sin(Y[3]+Y[1])^2); YP[4] := -2*(8*cos(Y[3]+Y[1])*sin(Y[3]+Y[1])*Y[4]^2+8*Y[2]^2*cos(Y[3]+Y[1])+10*sin(Y[1])*sin(Y[3]+Y[1])+15*cos(Y[3]))/(16*sin(Y[3]+Y[1])^2-5*cos(Y[3])^2-5*sin(Y[3])^2-16); YP[1] := Y[2]; YP[3] := Y[4]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, []]), ( 17 ) = ([proc (N, X, Y, YP) option `[Y[1] = epsilon(t), Y[2] = diff(epsilon(t),t), Y[3] = phi1(t), Y[4] = diff(phi1(t),t)]`; YP[2] := (64*sin(Y[3]+Y[1])*(-64*Y[4]*Y[2]*cos(Y[3]+Y[1])+120*cos(Y[3])+64*Y[2]*(Y[4]+Y[2])*cos(Y[3]+Y[1]))-(-64*Y[4]*Y[2]*cos(Y[3]+Y[1])+80*sin(Y[1])+64*Y[4]*(Y[4]+Y[2])*cos(Y[3]+Y[1]))*(-20*cos(Y[3])^2-20*sin(Y[3])^2-64))/(1280*cos(Y[3])^2+1280*sin(Y[3])^2+4096-4096*sin(Y[3]+Y[1])^2); YP[4] := -2*(8*cos(Y[3]+Y[1])*sin(Y[3]+Y[1])*Y[4]^2+8*Y[2]^2*cos(Y[3]+Y[1])+10*sin(Y[1])*sin(Y[3]+Y[1])+15*cos(Y[3]))/(16*sin(Y[3]+Y[1])^2-5*cos(Y[3])^2-5*sin(Y[3])^2-16); YP[1] := Y[2]; YP[3] := Y[4]; 0 end proc, -1, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0)  ] ))  ] ); _y0 := Array(0..4, {(1) = 0., (2) = 0., (3) = 0., (4) = -.625000000000000}); _vmap := array( 1 .. 4, [( 1 ) = (1), ( 2 ) = (2), ( 3 ) = (3), ( 4 ) = (4)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); if _par <> [] then `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) end if; `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [t, epsilon(t), diff(epsilon(t), t), phi1(t), diff(phi1(t), t)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(12)

odeplot(sol_num, [t, phi1(t), epsilon(t)], t = 0 .. .5); odetest(sol_num, ode_sys)

Error, (in ODEtools/info) Required a specification of the indeterminate function

 

``


 

Download Differential_Equations_Trebuchet_Phase_II_2020-06-05.mw

 

Hi,

I need taylor expasion of

A(w):=M/sqrt(M^2+2*w)-mup*sqrt(((mu*M^2+3*sigmap-2*w)-sqrt((mu*M^2+3*sigmap-2*w)^2-12*mu*sigmap*M^2))/(6*sigmap))

I used taylor(A,w,4), but I had a problem!

If I know that A(w) is a real function, how can I remove ‘csgn’ from the  ‘taylor(A,w,4)’ command:

Thanks.

12.mws

restart; with(plots):with(LinearAlgebra):unprotect(O); alias(conj = conjugate); conj z = lambda*v+a; La droite D est représentée par son équation complexe Appelons H l'affixe h le pied de la perpendicukaire abaissée de O sur (D) Les vecteurs OH et V sont orthogonaux donc z = lambda v + a h*conj(v)+conj(h)*v = 0; Le point H appartient à la droite (D) donc : h = lambda*v+a; conj(h) = conj(a)+lambda*conj(v); (lambda*v+a)*conj(v)+(conj(a)+lambda*conj(v))*v = 0; solve(%, lambda); h := simplify(subs(lambda = %, lambda*v+a)); a := 3-I*4; v := -2/3+4*I; evalc(h); H := [Re(h), Im(h)]; Représentation graphique d'un cas particulier : f := proc (x) options operator, arrow; -3*x+5 end proc: a := 3: A := [a, f(a)]:O:=[0,0]: zo := [8/3+I*f(8/3)]; ze := [2+I^(eval(diff(f(x), x), x = 2))]; Zo := [8/3, f(8/3)]; Ze := [2, f(2)]; ex := -3*x+5; V := `

Good day sirs, I write a system of DAE but giving me this code "(The use of global variables in numerical ODE problems is deprecated, and will be removed in a future release. Use the 'parameters' argument instead (see ?dsolve,numeric,parameters)". The code is attached below.

Thanking you in anticipating for your help.

Help!!!!.mw

 

f := x -> exp(-x)*sin(x); intvx:= 0..3;
f := proc (x) options operator, arrow; exp(-x)*sin(x) end proc
intvx := 0 .. 3

 

And this one below ( i prefer this one ) , but got in worksheet now the one above
Probably a option issue ?

 

 

f := x -> exp(-x)*sin(x); intvx:= 0..3;

proc (x) options operator, arrow; exp(-x)*sin(x) end proc


 

restart;

ii := 50;

seq(ii, ii = 0 .. 5);

evalf(int(ii, ii = 0 .. 5))

 

For sequence the syntax is correct i.e the output is 0,1,2,3,4,5. is ii inside sequence command takes the value 5 assigned it then changes when ii ranges from 0 to 5?

restart;

ii:=50:
seq(ii)

output: 50

restart;

ii:=50:

seq(seq(ii),ii=1..5)

expected answer: 50,50,50,50,50

obtained: 1,2,3,4,5

please explain how seq command works

 

Trebuchet, Phase I, 2020-05-27 Ki restart; with(RealDomain); with(SolveTools); assume(h < r1); additionally(h < r2); [Im, Re, ^, arccos, arccosh, arccot, arccoth, arccsc, arccsch, arcsec, arcsech, arcsin, arcsinh, arctan, arctanh, cos, cosh, cot, coth, csc, csch, eval, exp, expand, limit, ln, log, sec, sech, signum, simplify, sin, sinh, solve, sqrt, surd, tan, tanh ] [AbstractRootOfSolution, Basis, CancelInverses, Combine, Complexity, Engine, GreaterComplexity, Identity, Inequality, Linear, Parametric, Polynomial, PolynomialSystem, RationalCoefficients, SemiAlgebraic, SortByComplexity] hz1 := g*(r3*m3*cos(phi1(t))-r1*m2*sin(phi2(t))/sin(phi2(t)-phi1(t)))/theta3; whattype(phi1(t)); whattype(phi2(t)); / r1 m2 sin(phi2(t)) \ g |r3 m3 cos(phi1(t)) + -----------------------| \ sin(-phi2(t) + phi1(t))/ hz1 := ------------------------------------------------ theta3 function function hz2 := phi1(t)+arcsin((h+r1*sin(phi1(t)))/r2); /h + r1 sin(phi1(t))\ hz2 := phi1(t) + arcsin|-------------------| \ r2 / subs(phi2 = hz2, hz1); / / | | 1 | | ------ |g |r3 m3 cos(phi1(t)) theta3 | | | | \ \ // /h + r1 sin(phi1(t))\\ \ \\ r1 m2 sin||phi1(t) + arcsin|-------------------||(t)| || \\ \ r2 // / || + ----------------------------------------------------------|| / / /h + r1 sin(phi1(t))\\ \|| sin|-|phi1(t) + arcsin|-------------------||(t) + phi1(t)||| \ \ \ r2 // /// deq := diff(phi1(t), t, t)-% = 0; / / / 2 \ | | | d | 1 | | deq := |---- phi1(t)| - ------ |g |r3 m3 cos(phi1(t)) | 2 | theta3 | | \ dt / | | \ \ / /h + r1 sin(phi1(t))\ \ \ r1 m2 sin|phi1(t)(t) + arcsin|-------------------|(t)| | \ \ r2 / / | + -----------------------------------------------------------| / /h + r1 sin(phi1(t))\ \| sin|-phi1(t)(t) - arcsin|-------------------|(t) + phi1(t)|| \ \ r2 / // \ | | | = 0 | | / ics := phi1(0) = -arcsin(h/r1), (D(phi1))(0) = 0; /h \ ics := phi1(0) = -arcsin|--|, D(phi1)(0) = 0 \r1/ dsolve({deq, ics}, phi1(t)); dsolve(deq); deq_numeric := subs(r1 = 8, r2 = 8, r3 = 1, h = 5, m2 = 1, m3 = 20, theta3 = 20, deq); / | / d / d \\ 1 | |--- |--- phi1(t)|| - -- g |20 cos(phi1(t)) \ dt \ dt // 20 | | \ / /5 \ \ \ 8 sin|phi1(t)(t) + arcsin|- + sin(phi1(t))|(t)| | \ \8 / / | + --------------------------------------------------------| = 0 / /5 \ \| sin|-phi1(t)(t) - arcsin|- + sin(phi1(t))|(t) + phi1(t)|| \ \8 / // ics_numeric := phi1(0) = 0, (D(phi1))(0) = -.63; ics_numeric := phi1(0) = 0, D(phi1)(0) = -0.63 hz1 := dsolve({ics, deq_numeric}, phi1(t), numeric); Error, (in dsolve/numeric/process_input) unknown arcsin(5/8+sin(phi1(t))) present in ODE system is not a specified dependent variable or evaluatable procedure sin(-phi1(t)-arcsin((h+r1*sin(phi1(t)))/r2)); / /h + r1 sin(phi1(t))\\ -sin|phi1(t) + arcsin|-------------------|| \ \ r2 //

Hello everyone,

first, I'd like to mention that I am relatively new to Maple and am therefore thankful for any advice you might have!

I am trying to integrate the term (k_1^2 * r) from a to infinity, see the picture below as well as the attached file. Maple seems to have some issues with that. However, if I break the integral down into more manageable parts it suddenly works! Why is that? How can I get Maple to solve this immeadiately?  I suspect the culprit lies in the term that contains (-Ei(-B*r)*r^(-1)) where Ei is the exponential integral as defined in Maple. The resulting  hypergeometric function seems suspicious.

The problem is that I have to evaluate 21 integrals of this type (k_x*k_y*r) and breaking them down manually becomes pretty cumbersome, especially as the number of terms in the expanded expressions increases. Is there a way to automate this procedure? I guess I would need to extract individual terms and automatically plug them into the integral expression. That should the last resort, however.

The specific problem (everything included for context, weird stuff happens after equation 15):

Maple_Problem.mw

As for the variables: E, t, and R are real positive numbers. a and B are already assumed as real and positive. A_0, C_0, A_2, and C_2 are real numbers (could be negative, I do not know yet since they must be determined later on). a_0 is definitely real, but it may be negative. r is the polar coordinate, so it is also real and positive, but adding this assumption did not yield a better result.

 

Thank you for your help!

 

conj := conjugate; d := a*x+b*y-c = 0; z := x+I*y; evalc(z+conj(z)); evalc(z-conj(z)); d := expand((1/2)*a*(z+conj(z))+b*(z-conj(z))/(2*I))-c; is(d = z(a-I*b)+conj(z)*(a+I*b)-2*c); varpi = a+I*b; is(d = z*conj(varpi)+conj(z)*varpi-2*c); How to perform calculations correctly ? Thank you.

How to get the inflection points for this function.?

fprime_expr:=x^sin(x)*(cos(x)*ln(x)+sin(x)/x);

i tried symbolic and numeric , but no answer 

for X:= solve( fprime_expr =0, x);

 

Hello,

While working for an assignment I had to use a piecewise function which gives a result based on a randomly generated value. The following is a much simpler version of what I've been working on, but it gives the same error.

A random value is uniformly distributed between 0 and 100. The piecewise returns a 1 if the value is between 0 and 50 and it returns 2 if the value is between 50 and 100. As far as I understand this function should only ever give 1 or 2, never something else. However when I loop this a few times Maple regularly returns a 0, which doesn't make sense to me. I've printed the values that return a 0 but none of these should break the piecewise. Can someone please explain to me what's going wrong here and how to fix it?

My code:

restart; randir := piecewise(0 <= r1() and r1() < 50, 1, 50 <= r1() and r1() < 100, 2);
for i to 1000 do r1 := rand(0. .. 100.0); if randir = 0 then print(fail[i], r1()) end if end do;
 

I've included a failure check to see when and at what values it returns a 0, and as you can see it happens very often.

I'm trying to create a graph using a matrix that has numbers and text values, how can I specify that some values of the matrix are strings and others are numbers? I'd like to create something like this

Hello

I use Maple 20018.2.

When I use "Data Set Search" and press Search I get following Error Message. I check that the network access to the internet is on enable. Does anybody has an Idea?

thank you

Murad

z1 := a1+I*b1; z2 := a2+I*b2; abs(z1) = 1; abs(z2) = 1; argument(z1) = alpha; argument(z2) = beta; On considère dans ℂ les complexes z1 et z2 de module 1 et d'argument α et β Show that (z1+z2)^2/(z1+z2) est un réel positf ou nul. Dans quel cas est-il nul ? is((z1^2+2*z1*z2+z2^2)/(z1+z2) = z1/z2+z2/z1+2);#wrong answer z1/z2 = exp(I*(alpha-beta)); z2/z1 = exp(I*(beta-alpha)); is(z1/z2+z2/z1+2 = 2*(1+cos(alpha-beta)));#wong answer Miscalculations. Thank you for your help.

I'm trying to obtain the dynamical response of a simply-supported beam with a cantilever extension, coupled to a spring-mass system. In mathematical terms, this system is ruled by three PDEs (relative to each bare part of the main structure) and one ODE (relative to the spring-mass system). I think my mathemical model is finely formulated, but Maple keeps telling me this:

Error, (in pdsolve/numeric/process_IBCs) improper op or subscript selector

I believe it is because my PDEs depend on "x" and "t", while the ODE depends solely on "t". I have tried to transform my ODE into a "PDE", making it also dependent of "x", but without imposing any boundary conditions relative to "x". However, after this Maple points a new error message:

Error, (in pdsolve/numeric) initial/boundary conditions must be defined at one or two points for each independent variable

Could someone help me finding a solution? My algorythm in shown in the attached file below.

Worksheet.mw

First 12 13 14 15 16 17 18 Last Page 14 of 61