Maple 2018 Questions and Posts

These are Posts and Questions associated with the product, Maple 2018

I have asked this before but am still confused. I have a half-dozen procedures I want to save. Don't want them in a module/package. I am using windows 10.

I just can't get the syntax correct on this.

Obviously after saving restart and load to test.

libname;
       "C:\Program Files\Maple 2018\lib", 

         "C:\Users\Ronan\maple\toolbox\CodeBuilder\lib", 

         "C:\Users\Ronan\maple\toolbox\OEIS\lib", 

         "C:\Users\Ronan\maple\toolbox\personal\lib", 

         "C:\Users\Ronan\maple\toolbox\UTF8\lib"
libdir := "C:/Users/Ronan/maple/toolbox/personal/lib";
     libdir := "C:/Users/Ronan/maple/toolbox/personal/lib"
NULL;

LibraryTools:-Save(Pedal, cat(kernelopts(homedir), "/maple/toolbox/personal/lib/Pedal.mpl"));
Error, (in LibraryTools:-Save) could not open `C:\Users\Ronan/maple/toolbox/personal/lib/Pedal.mpl\Pedal.m` for writing

 


I trying to get a proc to work. In the 1st half of the document, I derive four sections for a pedal curve and plot them fine. In the second I try doing it with a procedure called Pedal. Am having problems. I think it might be something to do with the for.. do loop. 

restart

NULLNULL

Typesetting:-mrow(Typesetting:-mi("Trunc", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("≔", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("proc", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("F", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("∷", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("procedure", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("`+`", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal", open = "{", close = "}"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("odr", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("∷", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mi("posint", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("≔", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mn("2", font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("v", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("∷", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mi("list", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("name", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo("≔", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("x", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mi("y", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal", open = "[", close = "]")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mi(""), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("description", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-ms(" Truncates an algebraic equation to required degree"), Typesetting:-mo(";", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "auto"), Typesetting:-mo("local", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("f", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("≔", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("`if`", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("F", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("∷", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mi("procedure", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("F", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("v", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("")), font_style_name = "2D Input", mathvariant = "normal", open = "[", close = "]")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("F", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(";", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.2777778em"), Typesetting:-mi("print", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("F", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(";", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.2777778em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "auto"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("if", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("not", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("f", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("∷", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mi("`+`", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("then", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "auto"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("error", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-ms("Can't truncate 1-term expression"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "auto"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("else", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "auto"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("select", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("q", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo("→", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("degree", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mi("q", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mi("v", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("≤", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("odr", italic = "true", font_style_name = "2D Input", mathvariant = "italic"), Typesetting:-mo(",", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "true", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.3333333em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mi("f", italic = "true", font_style_name = "2D Input", mathvariant = "italic")), font_style_name = "2D Input", mathvariant = "normal"), Typesetting:-mi(""), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "auto"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("fi", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mspace(height = "0.0ex", width = "0.0em", depth = "0.0ex", linebreak = "newline"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("end", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(" ", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo("proc", bold = "true", font_style_name = "2D Input", mathvariant = "bold", fontweight = "bold", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.0em", rspace = "0.0em"), Typesetting:-mo(":", font_style_name = "2D Input", mathvariant = "normal", fence = "false", separator = "false", stretchy = "false", symmetric = "false", largeop = "false", movablelimits = "false", accent = "false", lspace = "0.2777778em", rspace = "0.2777778em"))

NULLNULLNULL

NULL

a := 3; b := -1; c := -1

C := (x^2+y^2+12*x+9)^2-4*(2*x+3)^3

(x^2+y^2+12*x+9)^2-4*(2*x+3)^3

(1)

p21 := plots:-implicitplot(C, x = -3 .. 3, y = -5 .. 5, colour = "Salmon", gridrefine = 2, size = [300, 300])

 

sol1 := [solve(C, y)]

[(-x^2-12*x-9+2*(8*x^3+36*x^2+54*x+27)^(1/2))^(1/2), -(-x^2-12*x-9+2*(8*x^3+36*x^2+54*x+27)^(1/2))^(1/2), (-x^2-12*x-9-2*(8*x^3+36*x^2+54*x+27)^(1/2))^(1/2), -(-x^2-12*x-9-2*(8*x^3+36*x^2+54*x+27)^(1/2))^(1/2)]

(2)

NULL

f1 := expand(eval(C, [x = X+r, y = Y+s]))

X^4+4*X^3*r+2*X^2*Y^2+4*X^2*Y*s+6*X^2*r^2+2*X^2*s^2+4*X*Y^2*r+8*X*Y*r*s+4*X*r^3+4*X*r*s^2+Y^4+4*Y^3*s+2*Y^2*r^2+6*Y^2*s^2+4*Y*r^2*s+4*Y*s^3+r^4+2*r^2*s^2+s^4-8*X^3-24*X^2*r+24*X*Y^2+48*X*Y*s-24*X*r^2+24*X*s^2+24*Y^2*r+48*Y*r*s-8*r^3+24*r*s^2+18*X^2+36*X*r+18*Y^2+36*Y*s+18*r^2+18*s^2-27

(3)

ltg1 := simplify(expand(eval(Trunc(f1, 1, [Y, X]), [X = x-r, Y = y-s])))

-3*r^4+(4*x+16)*r^3+(-6*s^2+4*s*y-24*x-18)*r^2+((4*x-48)*s^2+48*s*y+36*x)*r-27-3*s^4+4*s^3*y+(24*x-18)*s^2+36*s*y

(4)

NULLThis*section*works*out*the*pedal*curve

This*section*works*out*the*pedal*curve

(5)

xp1 := 1; yp1 := 2; lprp1 := -coeff(ltg1, y)*x+coeff(ltg1, x)*y+K1; for i to nops(sol1) do s := eval(sol1[i], x = r); print("s  ", s); K1 := solve(eval(lprp1, [x = xp1, y = yp1]), K1); print("K1  ", K1); sol2 := solve([ltg1, lprp1], [x, y]); Pedal || i := [rhs(sol2[1, 1]), rhs(sol2[1, 2])]; p9 || i := plot([op(Pedal || i), r = -20 .. 20], colour = "MediumSeaGreen"); unassign('K1', 'sol2') end do

"K1  ", -4*(-r^2-12*r-9-2*(8*r^3+36*r^2+54*r+27)^(1/2))^(3/2)-4*r^2*(-r^2-12*r-9-2*(8*r^3+36*r^2+54*r+27)^(1/2))^(1/2)+16*(8*r^3+36*r^2+54*r+27)^(1/2)*r-48*r*(-r^2-12*r-9-2*(8*r^3+36*r^2+54*r+27)^(1/2))^(1/2)+192*r^2+96*(8*r^3+36*r^2+54*r+27)^(1/2)-36*(-r^2-12*r-9-2*(8*r^3+36*r^2+54*r+27)^(1/2))^(1/2)+576*r+432

(6)

seq(simplify(Pedal || i), i = 1 .. nops(sol1))

[((((2*r+3)^3)^(1/2)+6*r+9)*(-r^2-12*r-9+2*((2*r+3)^3)^(1/2))^(1/2)-2*(r-3)*(r^2+(5/2)*r-((2*r+3)^3)^(1/2)+3/2))/(4*r^2-6*r-18), ((-2*r^2-3*r-((2*r+3)^3)^(1/2))*(-r^2-12*r-9+2*((2*r+3)^3)^(1/2))^(1/2)+6*(r-3)*(r-(1/6)*((2*r+3)^3)^(1/2)+3/2))/(4*r^2-6*r-18)], [((-((2*r+3)^3)^(1/2)-6*r-9)*(-r^2-12*r-9+2*((2*r+3)^3)^(1/2))^(1/2)-2*(r-3)*(r^2+(5/2)*r-((2*r+3)^3)^(1/2)+3/2))/(4*r^2-6*r-18), ((2*r^2+((2*r+3)^3)^(1/2)+3*r)*(-r^2-12*r-9+2*((2*r+3)^3)^(1/2))^(1/2)+6*(r-3)*(r-(1/6)*((2*r+3)^3)^(1/2)+3/2))/(4*r^2-6*r-18)], [((6*r-((2*r+3)^3)^(1/2)+9)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)-2*(r-3)*(r^2+(5/2)*r+((2*r+3)^3)^(1/2)+3/2))/(4*r^2-6*r-18), ((-2*r^2+((2*r+3)^3)^(1/2)-3*r)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)+6*(r-3)*(r+(1/6)*((2*r+3)^3)^(1/2)+3/2))/(4*r^2-6*r-18)], [((((2*r+3)^3)^(1/2)-6*r-9)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)-2*(r-3)*(r^2+(5/2)*r+((2*r+3)^3)^(1/2)+3/2))/(4*r^2-6*r-18), ((2*r^2-((2*r+3)^3)^(1/2)+3*r)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)+6*(r-3)*(r+(1/6)*((2*r+3)^3)^(1/2)+3/2))/(4*r^2-6*r-18)]

(7)

plots:-display(p21, seq(p9 || i, i = 1 .. nops(sol1)), size = [600, 600], scaling = constrained, caption = " Curve and it's Pedal curve")

 

This I can't get to work. All 4 sections of the pedal curve are the same and should not be.

Parse:-ConvertTo1D, "`%1` is not a module or member", RonanRoutines

Pedal2 := Pedal(C, xp1, yp1)

"K||i", -8*r^3+(-4*(-r^2-12*r-9-2*(8*r^3+36*r^2+54*r+27)^(1/2))^(1/2)+48)*r^2-8*(-(-r^2-12*r-9-2*(8*r^3+36*r^2+54*r+27)^(1/2))^(1/2)-3)^2*r-4*(-r^2-12*r-9-2*(8*r^3+36*r^2+54*r+27)^(1/2))^(3/2)+48*r^2+576*r+432+96*(8*r^3+36*r^2+54*r+27)^(1/2)-36*(-r^2-12*r-9-2*(8*r^3+36*r^2+54*r+27)^(1/2))^(1/2)

(8)

seq(simplify(Pedal2[i]), i = 1 .. nops(sol1))

[((4*r^2+6*((2*r+3)^3)^(1/2)+30*r+36)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)+(-r^2-34*r-69)*((2*r+3)^3)^(1/2)-26*r^3-243*r^2-540*r-351)/((2*r+30)*((2*r+3)^3)^(1/2)+36*r^2+162*r+162), (((r+9)*((2*r+3)^3)^(1/2)+14*r^2+51*r+45)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)+(12*r+72)*((2*r+3)^3)^(1/2)+4*r^3+126*r^2+432*r+378)/((2*r+30)*((2*r+3)^3)^(1/2)+36*r^2+162*r+162)], [((4*r^2+6*((2*r+3)^3)^(1/2)+30*r+36)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)+(-r^2-34*r-69)*((2*r+3)^3)^(1/2)-26*r^3-243*r^2-540*r-351)/((2*r+30)*((2*r+3)^3)^(1/2)+36*r^2+162*r+162), (((r+9)*((2*r+3)^3)^(1/2)+14*r^2+51*r+45)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)+(12*r+72)*((2*r+3)^3)^(1/2)+4*r^3+126*r^2+432*r+378)/((2*r+30)*((2*r+3)^3)^(1/2)+36*r^2+162*r+162)], [((4*r^2+6*((2*r+3)^3)^(1/2)+30*r+36)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)+(-r^2-34*r-69)*((2*r+3)^3)^(1/2)-26*r^3-243*r^2-540*r-351)/((2*r+30)*((2*r+3)^3)^(1/2)+36*r^2+162*r+162), (((r+9)*((2*r+3)^3)^(1/2)+14*r^2+51*r+45)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)+(12*r+72)*((2*r+3)^3)^(1/2)+4*r^3+126*r^2+432*r+378)/((2*r+30)*((2*r+3)^3)^(1/2)+36*r^2+162*r+162)], [((4*r^2+6*((2*r+3)^3)^(1/2)+30*r+36)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)+(-r^2-34*r-69)*((2*r+3)^3)^(1/2)-26*r^3-243*r^2-540*r-351)/((2*r+30)*((2*r+3)^3)^(1/2)+36*r^2+162*r+162), (((r+9)*((2*r+3)^3)^(1/2)+14*r^2+51*r+45)*(-r^2-2*((2*r+3)^3)^(1/2)-12*r-9)^(1/2)+(12*r+72)*((2*r+3)^3)^(1/2)+4*r^3+126*r^2+432*r+378)/((2*r+30)*((2*r+3)^3)^(1/2)+36*r^2+162*r+162)]

(9)

for i to nops(sol1) do p9 || i := plot([op(Pedal2[i]), r = -20 .. 20], colour = "MediumSeaGreen") end do

 

``

NULL

NULL

``


 

Download Proc_for_Pedal_not_working.mw

Hi

I am trying to evaluate a function that contains an infinite sum. I need to evaluate the integral to determine a CDF, and from that hopefully the inverse CDF in order to sample the corresponding PDF.

The sum comes from a 2F1 hypergeometric function, which I have written manually in the attached file.

Can anyone tell me if and how it is possible to evaluate this integral, with respect to x?

I have inserted an image below, but also the entire file :) Marginal2.mw

Thanks in advance.

 

Maple 2018 starts but block and hangs after the first imput.

Even after a clean install on a clean disk where there are no old files of maple.

My specs are: WIN10 pr 64/ I7 /16 GB/ SSD

Who has the same problem and a sollution?

The attached worksheet shows how to evaluate and graphically analyze an autonomous first-order nonlinear recurrence with two dependent variables and multiple symbolic parameters. 

This worksheet shows how a small module that simply encapsulates the given information of a problem combined with some use statements can greatly facilitate the organization of one's work, can encapsulate the setting of parameter values, and can allow one to work with symbolic parameters.

Edit: In the first version of this Post, I forgot to include the qualifier "autonomous".  The system being autonomous substantially simplifies its treatment.
 

Autonomous first-order nonlinear recurrences with parameters and multiple dependent variables

Author: Carl Love <carl.j.love@gmail.com> 20-Oct-2018

 

The techniques used in this worksheet can be applied to most autonomous first-order nonlinear recurrences with multiple dependent variables and parameters.

 

This worksheet shows how a small module that simply encapsulates the given information of a problem combined with some use statements

• 

can greatly facilitate the organization of one's work,

• 

can encapsulate the setting of parameter values,

• 

can allow one to work with symbolic parameters.

 

A Problem from MaplePrimes: A discrete Lottka-Volterra population model is applied to an isolated island with a population of predators (foxes), R, and prey (rabbits), K. [Note that R is the foxes, not the rabbits! Perhaps this problem statement originated in another language.] The change over one time period is given by

K[n+1]:= K[n]*(-b*R[n]+a+1);  R[n+1]:= R[n]*(b*e*K[n]-c+1),

where a, b, c, e are parameters of the model. In this problem we will use a= 0.15, b= 0.01, c= 0.02, e= 0.01, when numeric values are needed.

 

a) Show that there exists an equilibrium (values of K[n] and R[n] such that K[n+1] = K[n] and R[n+1] = R[n]).

 

b) Write Maple code that solves the recurrence numerically. Assume that if any population is less than 0.5 then it has gone extinct and set the value to 0. Check that your program is idempotent at the equilibrium.

 

restart:

We begin by collecting all the given information (except for specific numeric values) into a module. The ModuleApply lets the user set the numeric values later.

 

For all two-element vectors used in this worksheet, K is the first value and R is the second value.

KandR:= module()
local
   a, b, c, e, #parameters

   #procedure that lets user set parameter values:
   ModuleApply:= proc({
       a::algebraic:= KandR:-a, b::algebraic:= KandR:-b,
       c::algebraic:= KandR:-c, e::algebraic:= KandR:-e
   })
   local k;
      for k to _noptions do thismodule[lhs(_options[k])]:= rhs(_options[k]) od;
      return
   end proc,

   Extinct:= (x::realcons)-> `if`(x < 0.5, 0, x) #force small, insignificant values to 0
;
export
   #Procedure that does one symbolic iteration
   #(Note that this procedure uses Vector input and output.)
   iter_symb:= KR-> KR *~ <-b*KR[2]+a+1, b*e*KR[1]-c+1>, 

   #Such simple treatment as above is only possible for autonomous
   #recurrences.

  
   iter_num:= Extinct~@iter_symb #one numeric iteration
;
end module:

#The following expression is the discrete equivalent of the derivative (or gradient).
#It represents the change over one time period.
P:= <K,R>:  
OneStep:= KandR:-iter_symb(P) - P

Vector(2, {(1) = K*(-R*b+a+1)-K, (2) = R*(K*b*e-c+1)-R})

#An equilibrium occurs when the gradient is 0.
Eq:= <K__e, R__e>:
Eqs:= solve({seq(eval(OneStep=~ 0, [seq(P=~ Eq)]))}, [seq(Eq)]);

[[K__e = 0, R__e = 0], [K__e = c/(b*e), R__e = a/b]]

#We're only interested here in nonzero solutions.
EqSol:= remove(S-> 0 in rhs~(S), Eqs)[];

[K__e = c/(b*e), R__e = a/b]

#Set parameters:
KandR(a= 0.15, b= 0.01, c= 0.02, e= 0.01);

#Show idempotency at equilibrium:
use KandR in Eq0:= eval(Eq, EqSol); print(Eq0 = iter_num(Eq0)) end use:

(Vector(2, {(1) = 200.0000000, (2) = 15.00000000})) = (Vector(2, {(1) = 200.0000000, (2) = 15.00000000}))

#procedure that fills a Matrix with computed values of a 1st-order recurrence.
#(A more-efficient method than this can be used for linear recurrences.)
#This procedure has no dependence on the module.
Iterate:= proc(n::nonnegint, iter, init::Vector[column])
local M:= Matrix((n+1, numelems(init)), init^+, datatype= hfloat), i;
   for i to n do M[i+1,..]:= iter(M[i,..]) od;
   M
end proc:

We want to see what happens if the initial conditions deviate slightly from the equilibrium. It turns out that any deviation (as long as the
initial values are still nonnegative!) will cause the same effect. I simply chose the deviation <7,2> because it was the smallest for which

the plot clearly showed what happens using the scale that I wanted to show the plot at. By using a finer scale, it is possible to see the

"outward spiral" efffect from even the tiniest deviation.

dev:= <7,2>:
use KandR in KR:= Iterate(1000, iter_num, Eq0 + dev) end use:

plot(
   [
       KR, #trajectory of population
       KR[[1,1],..], #1st point
       KR[-[1,1],..], #last point,
       <Eq0|Eq0>^+, #equilibrium
       #every 100th point (helps show time scale):
       KR[100*[$1..iquo(numelems(KR[..,1]), 100)-1], ..]
   ],
   #This group of options are all lists, each element of which corresponds
   #to one of the above components of the plot:
   style= [line, point$4],
   symbol= [solidcircle$4, soliddiamond],
   symbolsize= [18$4, 12],
   color= [black, green, red, brown, blue],
   thickness= [0$5],
   legend= [`pop.`, init, final, equilibrium, `100 periods`],

   #This group of options are lists, each element of which corresponds to one
   #coordinate axis (horizontal, then vertical).
   view= [0..max(KR[..,1]), 0..max(KR(..,2))],
   labels= [rabbits, foxes],
   labeldirections= [horizontal,vertical],
   size= [700,700], #measured in pixels

   #options applied to whole plot:
   labelfont= [TIMES, BOLDITALIC, 14],
   title= "Population of foxes and rabbits over time" "\n", titlefont= [TIMES,16],
   caption=
      "\n" "Choosing an initial point near the equilibrium causes"
      "\n" "outward spiraling divergence." "\n",
   gridlines= false
);
 

A fieldplot helps show what happens for any starting values. An arrow is drawn from each of a 2-D grid of point. The magnitude and direction of the arrow show the gradient (as a vector) in this case.

plots:-fieldplot(
   rtable_eval(OneStep),
   K= 0..max(KR[..,1]),  R= 0..max(KR[..,2]), grid= [16,16],

   #arrow-specific options:
   anchor= tail, fieldstrength= log, arrows= slim, color= "DarkGreen",

   #other options (same as any 2D plot):
   labels= [rabbits, foxes], labeldirections= [horizontal,vertical],
   labelfont= [TIMES, BOLDITALIC, 14],
   title= "One-step population changes from any point" "\n", titlefont= [TIMES,16],
   caption= "\n" "All trajectories spiral outward from the equilibrium." "\n",
   size= [700,700],
   gridlines= false
);

The above plot is computed only from the symbolic discrete gradient expression OneStep; it does not use the computed population values from the first plot. It only uses the maxima of those computed values to determine the length of the axes.

 

Conclusion: While this is interesting stuff mathematically, and makes for great plots, divergence from the equilibrium doesn't seem realistic to me.

 


 

Download FoxesAndRabbits.mw

I have a solution to a linear ODE which is very long and complicated.  The solition clearly has some parts which are repeated and so it would would be easiest to express those repeated parts as something simpler.

 

For example, suppose I had

 

x = (-b + sqrt(b^2 - 4*a*c) ) /2*a

 

What is the command to take x and do someting like

 

Z = sqrt(b^2 - 4*a*c)

 

x = (-b + Z)/2*a

 

 

 

 

when plotting a polar function in terms of r and theta, is there a way to animate it?  

For instance I want to animate u(r,theta)=rcos(theta) for theta between 0 and 2Pi.

Why does the implicit plot return empty?

plots:-implicitplot((x^2+y^2 = 1)^2, x = -3 .. 3, y = -3 .. 3);# plots
   plots:-implicitplot((x^2+y^2-1)^2, x = -3 .. 3, y = -3 .. 3) # empty plot

 

So I currently have:
with(DifferentialGeometry); with(Tensor);
DGsetup([r, theta], pol);
g1 := evalDG(drdr+r^2d(theta)d(theta))
C1 := Christoffel(g1);
However its coming back saying that g1 is not of metric form, am i missing something? Thanks

why pdsolve does not work?

Q and alpha are constant. I want to find f(x,y).

Thanks
 

"restart: w(x,y) :=Q*sin^(2)(Pi*x)*sin^(2)(Pi*y)"

proc (x, y) options operator, arrow, function_assign; Q*sin(Pi*x)^2*sin(Pi*y)^2 end proc

(1)

PDE := diff(f(x, y), x, x, x, x)+2*(diff(f(x, y), x, x, y, y))/alpha^2+(diff(f(x, y), y, y, y, y))/alpha^4+((diff(w(x, y), y, y))*(diff(w(x, y), x, x))-(diff(w(x, y), x, y))^2)/alpha^2

diff(diff(diff(diff(f(x, y), x), x), x), x)+2*(diff(diff(diff(diff(f(x, y), x), x), y), y))/alpha^2+(diff(diff(diff(diff(f(x, y), y), y), y), y))/alpha^4+((2*Q*sin(Pi*x)^2*Pi^2*cos(Pi*y)^2-2*Q*sin(Pi*x)^2*sin(Pi*y)^2*Pi^2)*(2*Q*Pi^2*cos(Pi*x)^2*sin(Pi*y)^2-2*Q*sin(Pi*x)^2*sin(Pi*y)^2*Pi^2)-16*Q^2*sin(Pi*x)^2*sin(Pi*y)^2*Pi^4*cos(Pi*x)^2*cos(Pi*y)^2)/alpha^2

(2)

pdsolve(PDE)

``


 

Download PLATE.mw

Hello

I found this paper. 

http://benson-labs.com/uploads/stuff/POW15.pdf

I'm not sure if the population after 1 year is correct.

I wanted to get the formula from rsolve. But i have incorrorectly formulated the sum by day and the total.

Rattus_recursion.mw

 

Whilst trying to debug another problem on this site, this one

https://www.mapleprimes.com/questions/225688-How-To-Compute-Inverse-Of-A-Matrix-For

I came across a Maple bug(?) which was so serious, I thought either

  1. I'm being more than usually dim
  2. it needs it's own entry here, so that others can check

Problem can be summarized as:

When using 2D input, can the '.' character be used for simple matrix multiplication???? Because it isn't working for me!

Entering the '.' character places a bold, midline dot between the two arguments, but executing the result gives "Error unable to parse". Converting to 1-D input, no issues - everything works as expected.I should also point out that

  1. I never normally use 2D-input for my own work
  2. the attached worksheet executes correctly in Maple 2017.3, X86 64 WINDOWS, Sep 13 2017, Build ID 1262472.

If this is reproducible then wtf!

restart; with(LinearAlgebra); kernelopts(version)

`Maple 2018.1, X86 64 WINDOWS, Jun 8 2018, Build ID 1321769`

(1)

A := RandomMatrix(2, 2); B := RandomMatrix(2, 2)

Matrix(2, 2, {(1, 1) = 44, (1, 2) = -31, (2, 1) = 92, (2, 2) = 67})

 

Matrix(%id = 18446744074378134462)

(2)

A.B

Error, unable to parse

"A*B;"

 

LinearAlgebra:-Multiply(A, B)

Matrix(%id = 18446744074378136502)

(3)

A:= RandomMatrix(2, 2);
B:= RandomMatrix(2, 2);
A.B

Matrix(2, 2, {(1, 1) = -32, (1, 2) = -4, (2, 1) = -74, (2, 2) = 27})

 

Matrix(2, 2, {(1, 1) = -93, (1, 2) = -72, (2, 1) = -76, (2, 2) = -2})

 

Matrix(%id = 18446744074378132406)

(4)

 

Download matMulProb.mw

Hi,

I submit you this strange result:
for somenumerical  values of a, b, c  (a, b, c real and b > a), Maple 2018 is not able to compute the mean of
c*U where U is a Uniform random variable with support [a, b].


 

restart:

with(Statistics):

interface(version);

`Standard Worksheet Interface, Maple 2018.0, Windows 7, March 10 2018 Build ID 1298750`

(1)

z := .4070716688*RandomVariable(Uniform(0.12-0.02*0.12, 0.12+0.02*0.12));
Mean(z);

.4070716688*_R

 

Error, (in Statistics:-Mean) the expression does not have a taylor expansion at t = 0

 

z := .4070716688*RandomVariable(Uniform(a, b));
Mean(z);
subs({a=0.12-0.02*0.12, b=0.12+0.02*0.12}, %);

.4070716688*_R0

 

.2035358344*a+.2035358344*b

 

0.4884860026e-1

(2)

 


 

Download Mean.mw


PLEASE: Maple still fails if I replace  a = 0.12 -0.02*0.12 by its value 0.1174
                                                                       and b = 0.12+0.02*0.12 by its value 0.1224
                   

This is incomprehensible and could hide a more profound problem.

Hi.

How I can Plot voltage (v) versus time (t) in nonlinear differential equation.

if possible please provide a simple example for me. for instance the command that I must use!!

plot.pdf

Following creates a list of 10 numbers 1..10:

  L := []; for i from 1 to 10 do L := [op(L), i] end do;

Now suppose I have equations labelled (1) ... (10). Can I place these equations into a list by some analogy of the above code using the label references?

 

 

First 41 42 43 44 45 46 47 Last Page 43 of 61