Maple 2019 Questions and Posts

These are Posts and Questions associated with the product, Maple 2019

Here are 4 statements that attempt to use invlaplace on the exponential function. Two work, two don't.

Does anyone know why the two that don't work do that?

Thank you.

__________________________

with(inttrans);
[addtable, fourier, fouriercos, fouriersin, hankel, hilbert,   invfourier, invhilbert, invlaplace, invmellin, laplace, mellin,   savetable]
invlaplace(exp(-s),s,t);
                          Dirac(t - 1)
invlaplace(exp(s),s,t);
                    invlaplace(exp(s), s, t)
invlaplace(exp(s),s,t) assuming s<0,s::real;
                    invlaplace(exp(s), s, t)

invlaplace(exp(-s),s,t) assuming s<0,s::real;
                          Dirac(t - 1)
What is going on here?
 

Can anyone kindly tell me why isn't "evalm" working even with all the neccessary varaibles have corresponding values? 

Thank you!

Here is my code:

The Help page Physics/tensors-a complete guide states that spacetime metrics from Kramer et al. are referenced by chapter, section, and equation number, e.g., g_[[12, 16, 1]]. But there is no section 16 in Ch 12 and equations within each chapter are numbered sequentially without reference to section. By playing around it seems that in fact the first number is chapter, the second number is equation number, and the third number refers to subcases of the metric, when they are specified in the text. Is that correct?

Also, the output I get from say g_[[27, 27, 1]], or any other attempt  made, is just the metric, without any specification of the coordinates etc, which the Help pages susggest should be part of the output.

Hi.

I am calculating an integral but I cannot get the result.
Can you help me.
I provide the file.

Tank you

Regards

integral_doubt.mw
 

restart

Rm := 2.5*10^(-3)

0.25e-2

(1)

Lm := 10^(-3)

1/1000

(2)

Ms := 10.7*10^5

0.11e7

(3)

ICMr := `assuming`([Ms*(int((z(t)-Z)*((Rm^2+r(t)^2+(z(t)-Z)^2)*(int(sqrt(1-4*r(t)*Rm*sin(phi)^2/((Rm+r(t))^2+(z(t)-Z)^2)), phi = 0 .. (1/2)*Pi))/((Rm-r(t))^2+(z(t)-Z)^2)-(int(1/sqrt(1-4*r(t)*Rm*sin(phi)^2/((Rm+r(t))^2+(z(t)-Z)^2)), phi = 0 .. (1/2)*Pi)))/(sqrt((Rm+r(t))^2+(z(t)-Z)^2)*r(t)), Z = -Lm .. 0))/(2*Pi)], [0 <= r(t), r(t) <= 2.5*10^(-3)])

 

(12)

``

subs([r(t) = 0.24e-2, z(t) = 0.1e-2], ICMr)

 

(13)
 

 

   

 


 

Download integral_doubt.mw

In this figure, y axis scale is -1, -0.5,0,0.5,1.

i need that scale -1, -0.1, -0.2 -0.3......1

how to change?

 

How I can remove RootOf from the solution?

thanks.

root.mw

Hi,

I just wondering if I could write a variable as y' since when I try it, it will automatically diffrentiate the subject.

 

Thank you.

 

I have the following program which constructs the multiplication table, CI, for a matrix Lie algebra and evaluates the difference between CI's row dimension and its rank. The code is a little convoluted because "LieTable" formats the entries very strangely and forces incorrect rank values.

The matrix CI is constructed rather quickly (within a few seconds), and everything works well with "small" examples (up to 12 basis elements has evaluated within seconds). However, the example I've included is for a 27-dimensional Lie algebra. As I stated, CI is constructed quickly, even in larger examples, but the rank evaluation (i.e., LinearAlgebra:-Rank(CI)) has never completed for the example I've included. I let it run for about 3 hours before shutting it down.

I have an older Macbook Air which I am using to run these computations. Could this simply be an issue of not enough computing power?

I have attempted to import the matrix CI into Mathematica (to see if it was simply a limitation of Maple), but that's its own headache (reads entries of the matrix incorrectly).

 

Any recommendations would help. If this is an issue of computing power, I can get access to a more powerful system soon. It doesn't seem that the code itself would cause the issue, since it is not the construction of the matrix which is giving me issues, it is the evaluation of the rank. I am rather naive about Maple (and programming in general) though, so I may be wrong.

 

Index_and_Contact.mw

I have a position vector in 3D space of  <t,0,(2/3)t^(3/2)>,0<=t<=8. I found the unit tangent vector to be <1/((1+t)^(1/2)),0,(t^1/2)/((1+t)^(1/2))>. I am not sure how to graph the unit tangent vector and the position vector together. I attached the file I am working in.

 

Unit_Vector_Tangent.mwUnit_Vector_Tangent.mw

Hi,

Is there any way we could use Maple to simplify an equation,

Example: M= 2pqrst / uvw 

I would like a code or a way to separate some variables into one variable, where the expression would be M = 2Krst / w

which can be said that K = pq / uv

I know that I can use the simplify command but it's only worked for simpler expression but not complicated one.

Really need help from you guys. 

 

Thank you :)

 

I need to get fine curved figure.

please suggest command.   Please also tell 6 differnt markers like symbol = asterisk.

I am not geting value of F3.

question_1.mw
 

restart

A1 := diff(f[3](x), x, x, x, x)+2*R*(((A-1)*x+1)*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x))+(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x)*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x))+((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x)*(diff((A-1)*x+1, x))+((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x)*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x))+(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2)*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x))+(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2)*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x)))-L*R*((diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x))*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x, x))+(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x))*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x, x))+(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x))*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x, x))+3*(diff((A-1)*x+1, x))*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x, x))+3*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x))*(diff(-2*R*(-(1/10)*A*C1*x^5-(1/10)*A*C2*x^5+(1/2)*A*C1*L*x^3+(1/6)*A*C1*x^4+(1/2)*A*C2*L*x^3+(1/12)*A*C2*x^4+(1/10)*x^5*C1+(1/10)*x^5*C2-A*C1*L*x^2-(1/2)*A*C2*L*x^2-(1/2)*C1*x^3*L-(5/12)*x^4*C1-(1/2)*C2*L*x^3-(1/3)*x^4*C2+C1*x^2*L+(2/3)*C1*x^3+(1/2)*C2*L*x^2+(1/3)*x^3*C2-(1/2)*C1*x^2)+(-A*C1*L*R+(2/15)*R*C1*A-(1/30)*R*A*C2+C1*L*R-(3/10)*R*C1+(1/5)*R*C2)*x, x, x))+3*(diff((1/210)*R^2*((1/72)*(-204*A*C1^2-408*A*C1*C2-204*A*C2^2+204*C1^2+408*C1*C2+204*C2^2)*x^9+(1/56)*(784*A*C1^2+1176*A*C1*C2+392*A*C2^2-1036*C1^2-1680*C1*C2-644*C2^2)*x^8+(1/42)*(2394*A*C1^2*L+4788*A*C1*C2*L+2394*A*C2^2*L-28*A^3-1064*A*C1^2-1064*A*C1*C2-140*A*C2^2-2394*C1^2*L-4788*C1*C2*L-2394*C2^2*L+84*A^2+2072*C1^2+2576*C1*C2+644*C2^2-84*A+28)*x^7+(1/30)*(-6300*A*C1^2*L-9450*A*C1*C2*L-3150*A*C2^2*L+420*A*C1^2+210*A*C1*C2+8820*C1^2*L+14490*C1*C2*L+5670*C2^2*L-140*A^2-1960*C1^2-1750*C1*C2-280*C2^2+280*A-140)*x^6+(1/20)*(-2520*A*C1^2*L^2-5040*A*C1*C2*L^2-2520*A*C2^2*L^2+70*A^3*L+5348*A*C1^2*L+5516*A*C1*C2*L+728*A*C2^2*L+2520*C1^2*L^2+5040*C1*C2*L^2+2520*C2^2*L^2+42*A^3-210*A^2*L+200*A*C1^2+120*A*C1*C2-80*A*C2^2-12068*C1^2*L-15596*C1*C2*L-4088*C2^2*L+14*A^2+210*A*L+780*C1^2+440*C1*C2+220*C2^2-294*A-70*L+238)*x^5+(1/12)*(5040*A*C1^2*L^2+7560*A*C1*C2*L^2+2520*A*C2^2*L^2-1176*A*C1^2*L-672*A*C1*C2*L+84*A*C2^2*L-5040*C1^2*L^2-7560*C1*C2*L^2-2520*C2^2*L^2-14*A^3+210*A^2*L-136*A*C1^2-34*A*C1*C2+32*A*C2^2+7308*C1^2*L+7056*C1*C2*L+1008*C2^2*L+70*A^2-420*A*L-12*C1^2+18*C1*C2-180*C2^2+112*A+210*L-168)*x^4+(1/6)*(-2772*A*C1^2*L^2-3024*A*C1*C2*L^2-252*A*C2^2*L^2-63*A^3*L-300*A*C1^2*L-180*A*C1*C2*L+120*A*C2^2*L+2772*C1^2*L^2+3024*C1*C2*L^2+252*C2^2*L^2-21*A^2*L-1842*C1^2*L-1164*C1*C2*L-162*C2^2*L-28*A^2+231*A*L-48*C1^2-12*C1*C2+36*C2^2-14*A-147*L+42)*x^3)+(1/2)*(-(2/15)*L*R^2*A-(1/30)*L*R^2*A^2+(24/35)*L*R^2*C1^2+(17/35)*L*R^2*C2^2+(1/15)*L*R^2*A^3+(6/35)*L*R^2*C1*C2-(6/5)*L^2*R^2*C1*C2+(68/105)*L*R^2*A*C1^2-(16/105)*L*R^2*A*C2^2+(8/5)*L^2*R^2*A*C1^2-(2/5)*L^2*R^2*C2^2*A+(17/105)*L*R^2*A*C1*C2+(6/5)*L^2*R^2*A*C1*C2-(8/5)*C1^2*R^2*L^2+(2/5)*L^2*R^2*C2^2+(1/10)*L*R^2)*x^2+(-(86/525)*L*R^2*A*C1^2-(29/1050)*L*R^2*A*C1*C2+(1/350)*L*R^2*A*C2^2-(2/1575)*R^2*A^3+(1/140)*R^2*A*C1^2-(1/1260)*R^2*A*C1*C2+(1/420)*R^2*A*C2^2-(19/525)*L*R^2*C1^2-(1/175)*L*R^2*C1*C2-(89/525)*L*R^2*C2^2+(2/525)*R^2*A^2+(1/126)*C1^2*R^2-(1/1260)*R^2*C1*C2+(1/315)*R^2*C2^2+(11/6300)*R^2*A-(3/700)*R^2)*x, x))*(diff((A-1)*x+1, x, x))+2*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x))*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x, x))+2*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x))*(diff(-2*R*((1/140)*C1^2*x^7+(1/70)*C1*C2*x^7+(1/140)*C2^2*x^7-(3/10)*C1^2*L*x^5-(1/30)*C1^2*x^6-(3/5)*C1*C2*L*x^5-(1/20)*C1*C2*x^6-(3/10)*C2^2*L*x^5-(1/60)*C2^2*x^6+(1/120)*A^2*x^5+C1^2*L*x^4+(1/20)*C1^2*x^5+(3/2)*C1*C2*L*x^4+(1/20)*C1*C2*x^5+(1/2)*C2^2*L*x^4-(1/60)*x^5*A+(1/24)*x^4*A+(1/120)*x^5-(1/24)*x^4)+(1/6)*((66/5)*C1^2*L*R+(72/5)*C1*C2*L*R+(6/5)*C2^2*L*R+(3/10)*R*A^2+(22/35)*R*C1^2+(9/35)*R*C1*C2-(13/35)*R*C2^2+(2/5)*R*A-(7/10)*R)*x^3+(1/2)*(-(8/5)*C1^2*L*R-(6/5)*C1*C2*L*R+(2/5)*C2^2*L*R-(1/15)*R*A^2-(4/35)*R*C1^2-(1/35)*R*C1*C2+(3/35)*R*C2^2-(1/30)*R*A+(1/10)*R)*x^2, x, x, x))+2*(diff(-(1/105)*R^2*((1/7920)*(-648*C1^3-1944*C1^2*C2-1944*C1*C2^2-648*C2^3)*x^11+(1/5040)*(3024*C1^3+7560*C1^2*C2+6048*C1*C2^2+1512*C2^3)*x^10+(1/3024)*(16632*C1^3*L+49896*C1^2*C2*L+49896*C1*C2^2*L+16632*C2^3*L+21*A^2*C1+21*A^2*C2-5376*C1^3-10752*C1^2*C2-6216*C1*C2^2-840*C2^3-42*A*C1-42*A*C2+21*C1+21*C2)*x^9+(1/1680)*(-55440*C1^3*L-138600*C1^2*C2*L-110880*C1*C2^2*L-27720*C2^3*L+70*A^2*C1+35*A^2*C2+4200*C1^3+6300*C1^2*C2+2100*C1*C2^2+70*A*C1+140*A*C2-140*C1-175*C2)*x^8+(1/840)*(-83160*C1^3*L^2-249480*C1^2*C2*L^2-249480*C1*C2^2*L^2-83160*C2^3*L^2+210*A^2*C1*L+210*A^2*C2*L+65184*C1^3*L+130872*C1^2*C2*L+75432*C1*C2^2*L+9744*C2^3*L-84*A^2*C1+126*A^2*C2-420*A*C1*L-420*A*C2*L-996*C1^3-888*C1^2*C2-48*C1*C2^2-156*C2^3+28*A*C1-112*A*C2+210*C1*L+210*C2*L+476*C1+406*C2)*x^7+(1/360)*(166320*C1^3*L^2+415800*C1^2*C2*L^2+332640*C1*C2^2*L^2+83160*C2^3*L^2+840*A^2*C1*L+420*A^2*C2*L-29232*C1^3*L-44604*C1^2*C2*L-15372*C1*C2^2*L-168*A^2*C1-105*A^2*C2+210*A*C1*L+1050*A*C2*L-336*C1^3-330*C1^2*C2+138*C1*C2^2+132*C2^3+21*A*C1-105*A*C2-1050*C1*L-1470*C2*L-693*C1-210*C2)*x^6+(1/120)*(1890*A^2*C1*L^2+1890*A^2*C2*L^2-101304*C1^3*L^2-205632*C1^2*C2*L^2-122472*C1*C2^2*L^2-18144*C2^3*L^2-966*A^2*C1*L-756*A^2*C2*L-3780*A*C1*L^2-3780*A*C2*L^2+2448*C1^3*L+2052*C1^2*C2*L+540*C1*C2^2*L+936*C2^3*L+119*A^2*C1-14*A^2*C2+252*A*C1*L-588*A*C2*L+132*C1^3+54*C1^2*C2-78*C1*C2^2+1890*C1*L^2+1890*C2*L^2-98*A*C1+98*A*C2+714*C1*L+1344*C2*L+399*C1-84*C2)*x^5)+(1/24)*(-2*L*R^2*A*C2-(1368/5)*L^2*R^2*C1^2*C2-(504/5)*L^2*R^2*C1*C2^2-(44/7)*L*R^2*C1^2*C2+(92/35)*L*R^2*C1*C2^2-(16/5)*L*R^2*A^2*C1-2*L*R^2*A^2*C2-24*L^2*R^2*A*C1-12*L^2*R^2*A*C2+12*L^2*R^2*A^2*C1+6*L^2*R^2*A^2*C2-(4/15)*R^2*A*C1+(12/5)*L*R^2*A*C1+(1/15)*R^2*A*C2+(4/5)*L*R^2*C1+4*L*R^2*C2+12*L^2*R^2*C1+6*L^2*R^2*C2-(864/5)*L^2*R^2*C1^3-(32/5)*L*R^2*C1^3+(88/35)*L*R^2*C2^3-(2/5)*R^2*C2+(3/5)*R^2*C1)*x^4+(1/6)*((157/6300)*R^2*A*C1-(446/525)*L*R^2*A*C1-(2777/242550)*R^2*C1*C2^2+(653/12600)*R^2*A^2*C1+(1783/121275)*R^2*C2^3+(1783/121275)*R^2*C1^3+(359/525)*L*R^2*A*C2+(3882/175)*L^2*R^2*C1^2*C2+(312/175)*L^2*R^2*C1*C2^2+(102/175)*L*R^2*C1^2*C2-(118/175)*L*R^2*C1*C2^2+(33/5)*L^2*R^2*A*C1-(61/1800)*R^2*C1+(13/525)*L*R^2*C1+(157/6300)*R^2*A*C2-(989/1050)*L*R^2*C2-(3/10)*L^2*R^2*C2+(3324/175)*L^2*R^2*C1^3-(61/1800)*R^2*A^2*C2+(209/175)*L*R^2*C1^3-(11/175)*L*R^2*C2^3-(2777/242550)*R^2*C1^2*C2-(246/175)*R^2*L^2*C2^3+(653/12600)*R^2*C2-(33/10)*L^2*R^2*C1+(433/525)*L*R^2*A^2*C1+(271/1050)*L*R^2*A^2*C2+(3/5)*L^2*R^2*A*C2-(33/10)*L^2*R^2*A^2*C1-(3/10)*L^2*R^2*A^2*C2)*x^3+(1/2)*((1/1575)*R^2*A*C1+(131/1050)*L*R^2*A*C1+(59/121275)*R^2*C1*C2^2-(13/1575)*R^2*A^2*C1-(314/121275)*R^2*C2^3-(83/121275)*R^2*C1^3-(19/175)*L*R^2*A*C2-(156/175)*L^2*R^2*C1^2*C2+(54/175)*L^2*R^2*C1*C2^2+(1/175)*L*R^2*C1^2*C2+(8/175)*L*R^2*C1*C2^2-(4/5)*L^2*R^2*A*C1-(17/6300)*R^2*C1-(13/1050)*L*R^2*C1-(8/1575)*R^2*A*C2+(127/1050)*L*R^2*C2-(1/10)*L^2*R^2*C2-(192/175)*L^2*R^2*C1^3+(29/4200)*R^2*A^2*C2-(12/175)*L*R^2*C1^3-(1/35)*L*R^2*C2^3+(58/24255)*R^2*C1^2*C2+(18/175)*R^2*L^2*C2^3-(13/12600)*R^2*C2+(2/5)*L^2*R^2*C1-(59/525)*L*R^2*A^2*C1-(13/1050)*L*R^2*A^2*C2+(1/5)*L^2*R^2*A*C2+(2/5)*L^2*R^2*A^2*C1-(1/10)*L^2*R^2*A^2*C2)*x^2, x, x))*(diff((1/6)*(6*C2+6*C1)*x^3+(1/2)*(-2*C2-4*C1)*x^2+C1*x, x, x, x))) = 0; Eq7 := dsolve({A1, f[3](0) = 0, f[3](1) = 0, (D(f[3]))(0) = 0, (D(f[3]))(1) = 0}, f[3](x))

(1)

``


 

Download question_1.mw

 

 

If I have a tensor T[mu,nu,alpha] in 3-dimensions which is symmetric on {mu,nu} and anti-symmetric on {nu,alpha}, then the number of independent components should be zero. However, if I put this into Maple, using Library:-MinimizeTensorComponents followed by Library:-NumberOfIndependentTensorComponents it returns 4.

Any insight into why it does this would be great, thanks.

Here is a strange one...

1> /Library/Frameworks/Maple.framework/Versions/2019/bin/maple ; exit;
    |\^/|     Maple 2019 (APPLE UNIVERSAL OSX)
._|\|   |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2019
 \  MAPLE  /  All rights reserved. Maple is a trademark of
 <____ ____>  Waterloo Maple Inc.
      |       Type ? for help.
> version();
 User Interface: 1435526
         Kernel: 1435526
        Library: 1435526
                                    1435526

> DE := (28*x + 44)*u(x) + (336*x^2 +
> 726*x - 12)*diff(u(x), x) + (144*x^3 + 396*x^2 - 9*x)*diff(u(x), x, x);
                               2               /d      \
DE := (28 x + 44) u(x) + (336 x  + 726 x - 12) |-- u(x)|
                                               \dx     /

                               / 2      \
             3        2        |d       |
     + (144 x  + 396 x  - 9 x) |--- u(x)|
                               |  2     |
                               \dx      /

> dsolve({DE,u(0)=2},u(x));
memory used=21.5MB, alloc=44.3MB, time=0.37
memory used=53.3MB, alloc=84.3MB, time=0.94
Error, (in dsolve) when calling 'property/ConvertRelation'. Received: 'numeric
exception: division by zero'

Presumably, the solution should be


u0:=2*HeunG((11 - 5*sqrt(5))/(11 + 5*sqrt(5)), 352/(9*(11 + 5*sqrt(5))^3*(-11 + 5*sqrt(5))^2), 1/6, 7/6, 4/3, 1/2, -8*x/(11 + 5*sqrt(5)));

(I get that by replacing coefficient 44 in DE with variable e44, solve, then substitute back e44 = 44.)

But maybe the problem is that this solution turns out to be an algebraic function:

u1:=2^(7/6)/(1 - 22*x + sqrt(-16*x^2 - 44*x + 1))^(1/6);

 

 

 

f[2](x) = -(3*R^2*x^11)/30800 + R^2*x^9/420 - (177*R^2*x^7)/9800 + M1*M2*x^5/40 + (17*R^2*x^5)/700 + ((-(3*M1*M2)/10 - (443*R^2)/21560)*x^3)/6 + (M1*M2/40 - (137*R^2)/26950)*x

First 12 13 14 15 16 17 18 Last Page 14 of 44