Maple 2022 Questions and Posts

These are Posts and Questions associated with the product, Maple 2022

A user found that the behaviour of calling a command from a library with a long form command name which invoked another command from that library with the short form name was unexpected:

restart;
ScientificConstants:-GetValue(Constant(g))

Error, (in ScientificConstants:-GetValue) `Constant(g)` is not a scientific constant object

 

 

 

We suggested to either

[Edit May 13 after Acer's improvements]

A) import the package such that all short form names of commands from the package are available in the Maple session and use the short form of both commands:

restart;
with(ScientificConstants):
GetValue(Constant(g));

9.80665

(1)

Download scientificConstantsGetValueShortFormsWithPackage.mw

or

B) use long forms for both command names:

restart;
ScientificConstants:-GetValue(ScientificConstants:-Constant(g))

9.80665

(1)

Download scientificConstantsGetValueLongFormLongForm.mw

or

C) to test that a long form command and a short form command work together, import the package for the short form command:

restart;
with(ScientificConstants):
ScientificConstants:-GetValue(Constant(g))

9.80665

(1)

Download scientificConstantsGetValueLongFormWithPackage.mw

Further details can be found in the article ?UsingPackages

Have you ever wanted to create practice problems and quizzes that use buttons and other features to support a student making their way to an answer, such as the following?

Let’s take a look at how you can use Maple 2022 to create documents like these that can be deployed in Maple Learn. I know I’ve always wanted to learn, so let’s learn together. All examples have a document that you can use to follow along, found here, in Maple Cloud.  

The most important command you’ll want to take a look at is ShareCanvas. This command generates a Maple Learn document. Make sure to remember that command, instead of ShowCanvas, so that the end result gives you a link to a document instead of showing the results in Maple. You’ll also want to make sure you load the DocumentTools:-Canvas subpackage using with(DocumentTools:- Canvas).

If you take a look at our first example, below, the code may seem intimidating. However, let’s break it down, I promise it makes sense!

with(DocumentTools:-Canvas);
cv := NewCanvas([Text("Volume of Revolution", fontsize = 24), "This solid of revolution is created by rotating", f(x) = cos(x) + 1, Text("about the y=0 axis on the interval %1", 0 <= x and x <= 4*Pi), Plot3D("Student:-Calculus1:-VolumeOfRevolution(cos(x) + 1, x = 0 .. 4*Pi, output = plot, caption=``)")]);
ShareCanvas(cv);

The key command is Plot3D. This plots the desired graph and places it into a Maple Learn document. The code around it places text and a math group containing the equation being graphed. 


Let’s take a look at IntPractice now. The next example allows a student to practice evaluating an integral.

with(Grading):
IntPractice(Int(x*sin(x), x, 'output'='link'));

 This command allows you to enter an integral and the variable of integration, and then evaluates each step a student enters on their way to finding a result. The feedback given on every line is incredibly useful. Not only will it tell you if your steps are right, but will let you know if your last line is correct, i.e if the answer is correct.

Finally, let’s talk about SolvePractice.

with(Grading):
SolvePractice(2*x + 3 = 6*x - 9, 'output' = 'link');

This command takes an equation, and evaluates it for the specified variable. Like the IntPractice command, this command will check your steps and provide feedback. The image below shows how this command looks in Maple 2022.

These commands are the stepping stones for creating practice questions in Maple Learn. We can do so much more in Maple 2022 scripting than I realized, so let’s continue to learn together!

Some other examples of scripted documents in the Maple Learn Document Gallery are our steps documents, this document on the Four Color Visualization Theorem, and a color by numbers. As you can see, there’s a lot that can be done with Maple Scripting.

 Let us know in the comments if you’d like to see more on Maple 2022 scripting and Maple Learn.

To Maple support,

Why when removing symbol a from these equations makes Maple warning go away? This is from a textbook. Attached worksheet. 

 

restart;
ode:={diff(x__1(t),t)*sin(x__2(t))=x__4(t)*sin(x__3(t))+x__5(t)*cos(x__3(t)),diff(x__2(t),t)= x__4(t)*cos(x__3(t))-x__5(t)*sin(x__3(t)),diff(x__3(t),t)+diff(x__1(t),t)*cos(x__2(t))= 1,diff(x__4(t),t)-(1-B)*a*x__5(t)= sin(x__2(t))*cos(x__3(t)),diff(x__5(t),t)+(1-B)*a*x__4(t)=sin(x__2(t))*sin(x__3(t))};
dsolve(ode)

restart;
ode:={diff(x__1(t),t)*sin(x__2(t))=x__4(t)*sin(x__3(t))+x__5(t)*cos(x__3(t)),diff(x__2(t),t)= x__4(t)*cos(x__3(t))-x__5(t)*sin(x__3(t)),diff(x__3(t),t)+diff(x__1(t),t)*cos(x__2(t))= 1,diff(x__4(t),t)-(1-B)*x__5(t)= sin(x__2(t))*cos(x__3(t)),diff(x__5(t),t)+(1-B)*a*x__4(t)=sin(x__2(t))*sin(x__3(t))};
dsolve(ode)

worksheet attached also

interface(version)

`Standard Worksheet Interface, Maple 2022.0, Windows 10, March 8 2022 Build ID 1599809`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1230 and is the same as the version installed in this computer, created 2022, April 21, 9:8 hours Pacific Time.`

restart;

ode:={diff(x__1(t),t)*sin(x__2(t))=x__4(t)*sin(x__3(t))+x__5(t)*cos(x__3(t)),diff(x__2(t),t)= x__4(t)*cos(x__3(t))-x__5(t)*sin(x__3(t)),diff(x__3(t),t)+diff(x__1(t),t)*cos(x__2(t))= 1,diff(x__4(t),t)-(1-B)*a*x__5(t)= sin(x__2(t))*cos(x__3(t)),diff(x__5(t),t)+(1-B)*a*x__4(t)=sin(x__2(t))*sin(x__3(t))};
dsolve(ode)

{(diff(x__1(t), t))*sin(x__2(t)) = x__4(t)*sin(x__3(t))+x__5(t)*cos(x__3(t)), diff(x__3(t), t)+(diff(x__1(t), t))*cos(x__2(t)) = 1, diff(x__4(t), t)-(1-B)*a*x__5(t) = sin(x__2(t))*cos(x__3(t)), diff(x__5(t), t)+(1-B)*a*x__4(t) = sin(x__2(t))*sin(x__3(t)), diff(x__2(t), t) = x__4(t)*cos(x__3(t))-x__5(t)*sin(x__3(t))}

Warning, it is required that the numerator of the given ODE depends on the highest derivative. Returning NULL.

restart;

ode:={diff(x__1(t),t)*sin(x__2(t))=x__4(t)*sin(x__3(t))+x__5(t)*cos(x__3(t)),diff(x__2(t),t)= x__4(t)*cos(x__3(t))-x__5(t)*sin(x__3(t)),diff(x__3(t),t)+diff(x__1(t),t)*cos(x__2(t))= 1,diff(x__4(t),t)-(1-B)*x__5(t)= sin(x__2(t))*cos(x__3(t)),diff(x__5(t),t)+(1-B)*a*x__4(t)=sin(x__2(t))*sin(x__3(t))};
dsolve(ode)

{(diff(x__1(t), t))*sin(x__2(t)) = x__4(t)*sin(x__3(t))+x__5(t)*cos(x__3(t)), diff(x__3(t), t)+(diff(x__1(t), t))*cos(x__2(t)) = 1, diff(x__4(t), t)-(1-B)*x__5(t) = sin(x__2(t))*cos(x__3(t)), diff(x__5(t), t)+(1-B)*a*x__4(t) = sin(x__2(t))*sin(x__3(t)), diff(x__2(t), t) = x__4(t)*cos(x__3(t))-x__5(t)*sin(x__3(t))}

 

Download warning_may_10_2022.mw

I tried to graph the function f(x)=x^(1/3) but it only gives me a graph for non-negative x's, when the function f has all real numbers as its domain.

Maybe I'm doing it wrong.

Thank you.

Hi, with Units[Simple] package loaded, I tried to differentiate a few functions using D[n] but it does not work. problem.mw

a := proc (x, y) options operator, arrow; exp(x*y) end proc

proc (x, y) options operator, arrow; exp(y*x) end proc

(1)

D[1](a)

proc (x, y) options operator, arrow; y*exp(y*x) end proc

(2)

D[2](a)

proc (x, y) options operator, arrow; x*exp(y*x) end proc

(3)

retart

retart

(4)

"with(Units[Simple]):"

a := proc (x, y) options operator, arrow; exp(x*y) end proc

proc (x, y) options operator, arrow; Units:-Simple:-exp(Units:-Simple:-`*`(x, y)) end proc

(5)

D[1](a)

Error, (in tools/gensym) too many levels of recursion

 

D[2](a)

Error, (in tools/gensym) too many levels of recursion

 

NULL

Download problem.mw

To Maple support:

I was investigating this pde from a different forum.

I noticed that when using an expanded version of the pde, Maple hangs. Without expanding the PDE, Maple gives an answer in 2 seconds. 

Why does expanding the PDE makes a difference? I do not have an earlier version of Maple on my new PC to check if this is a new issue or not.
 

interface(version);

`Standard Worksheet Interface, Maple 2022.0, Windows 10, March 8 2022 Build ID 1599809`

Physics:-Version()

`The "Physics Updates" version in the MapleCloud is 1230 and is the same as the version installed in this computer, created 2022, April 21, 9:8 hours Pacific Time.`

restart;
pde1:=VectorCalculus:-Laplacian(u(r,theta),'polar'[r,theta]);
pde1_expanded:=expand(pde1);
bc  := u(1,theta)=sin(theta)^4,u(3,theta)=1;
pdsolve([pde1=0,bc],u(r,theta))
 

(diff(u(r, theta), r)+r*(diff(diff(u(r, theta), r), r))+(diff(diff(u(r, theta), theta), theta))/r)/r

(diff(u(r, theta), r))/r+diff(diff(u(r, theta), r), r)+(diff(diff(u(r, theta), theta), theta))/r^2

u(1, theta) = sin(theta)^4, u(3, theta) = 1

u(r, theta) = (1/52480)*((328*r^6-26568*r^2)*ln(3)*cos(2*theta)+(-r^8+6561)*ln(3)*cos(4*theta)+19680*(ln(3)+(5/3)*ln(r))*r^4)/(ln(3)*r^4)

pdsolve([pde1_expanded=0,bc],u(r,theta)); #HANGS, Waited more than 40 minutes.

 


 

Download hangs_pde.mw

Here is a Maple 2020 worksheet that ran fine on Maple 2020, but runs slower on Maple 2022, especially when plots[display] is used it seems to take much longer?

with(NumberTheory);
with(plots);
NULL;
NULL;
theta := [14.134725, 21.022039, 25.010858, 30.424876, 32.935062, 37.586178, 40.918719, 43.327073, 48.00515, 49.773832, 52.970321, 56.446248, 59.347044, 60.831779, 65.112544, 67.079811, 69.546402, 72.067158, 75.704691, 77.144840, 79.337375, 82.91038, 84.735493, 87.425273, 88.809111, 92.491899, 94.651344, 95.870634, 98.831194];
theta := [14.134725, 21.022039, 25.010858, 30.424876, 32.935062, 

  37.586178, 40.918719, 43.327073, 48.00515, 49.773832, 

  52.970321, 56.446248, 59.347044, 60.831779, 65.112544, 

  67.079811, 69.546402, 72.067158, 75.704691, 77.144840, 

  79.337375, 82.91038, 84.735493, 87.425273, 88.809111, 

  92.491899, 94.651344, 95.870634, 98.831194]

y[1] := x -> -2*sqrt(x)*cos(theta[1]*ln(x) - argument(0.5 + theta[1]*I))/(abs(0.5 + theta[1]*I)*ln(x));
y[1] := proc (x) options operator, arrow; -2*sqrt(x)*cos(theta[1\

  ]*ln(x)-argument(.5+I*theta[1]))/(abs(.5+I*theta[1])*ln(x)) 

   end proc

plot(y[1](x), x = 20 .. 100, title = 'Fig1*(S &G theta) = 1/2 + 14.134725*i');

y[2] := x -> -2*sqrt(x)*cos(theta[2]*ln(x) - argument(0.5 + theta[2]*I))/(abs(0.5 + theta[2]*I)*ln(x));
y[2] := proc (x) options operator, arrow; -2*sqrt(x)*cos(theta[2\

  ]*ln(x)-argument(.5+I*theta[2]))/(abs(.5+I*theta[2])*ln(x)) 

   end proc

plot(y[2](x), x = 20 .. 100, title = 'Fig1*(S &G theta) = 1/2 + 21.022040*i');

y[3] := x -> -2*sqrt(x)*cos(theta[3]*ln(x) - argument(0.5 + theta[3]*I))/(abs(0.5 + theta[3]*I)*ln(x));
y[3] := proc (x) options operator, arrow; -2*sqrt(x)*cos(theta[3\

  ]*ln(x)-argument(.5+I*theta[3]))/(abs(.5+I*theta[3])*ln(x)) 

   end proc

plot(y[3](x), x = 20 .. 100, title = 'Fig1*(S &G theta) = 1/2 + 25.00858*i');

y[4] := x -> -2*sqrt(x)*cos(theta[4]*ln(x) - argument(0.5 + theta[4]*I))/(abs(0.5 + theta[4]*I)*ln(x));
y[4] := proc (x) options operator, arrow; -2*sqrt(x)*cos(theta[4\

  ]*ln(x)-argument(.5+I*theta[4]))/(abs(.5+I*theta[4])*ln(x)) 

   end proc

plot(y[4](x), x = 20 .. 100, title = 'Fig1*(S &G theta) = 1/2 + 30.424876*i');

y[5] := x -> -2*sqrt(x)*cos(theta[5]*ln(x) - argument(0.5 + theta[5]*I))/(abs(0.5 + theta[5]*I)*ln(x));
y[5] := proc (x) options operator, arrow; -2*sqrt(x)*cos(theta[5\

  ]*ln(x)-argument(.5+I*theta[5]))/(abs(.5+I*theta[5])*ln(x)) 

   end proc

plot(y[5](x), x = 20 .. 100, title = 'Fig1*(S &G theta) = 1/2 + 32.93502*i');

T[1] := x -> -2*sum(Moebius(n)*Re(Ei((0.5 + theta[1]*I)*ln(x)))/n, n = 1 .. trunc(ln(100)/ln(2)) + 1);
T[1] := proc (x) options operator, arrow; -2*(sum(NumberTheory:-\

  Moebius(n)*Re(Ei((.5+I*theta[1])*ln(x)))/n, n = 1 .. 

   trunc(ln(100)/ln(2))+1)) end proc

plot(T[1](x), x = 20 .. 100, title = 'T[1]');

T[2] := x -> -2*sum(Moebius(n)*Re(Ei((0.5 + theta[2]*I)*ln(x)))/n, n = 1 .. trunc(ln(100)/ln(2)) + 1);
T[2] := proc (x) options operator, arrow; -2*(sum(NumberTheory:-\

  Moebius(n)*Re(Ei((.5+I*theta[2])*ln(x)))/n, n = 1 .. 

   trunc(ln(100)/ln(2))+1)) end proc

plot(T[2](x), x = 20 .. 100, title = 'T[2]');

T[3] := x -> -2*sum(Moebius(n)*Re(Ei((0.5 + theta[3]*I)*ln(x)))/n, n = 1 .. trunc(ln(100)/ln(2)) + 1);
T[3] := proc (x) options operator, arrow; -2*(sum(NumberTheory:-\

  Moebius(n)*Re(Ei((.5+I*theta[3])*ln(x)))/n, n = 1 .. 

   trunc(ln(100)/ln(2))+1)) end proc

plot(T[3](x), x = 20 .. 100, title = 'T[3]');

T[4] := x -> -2*sum(Moebius(n)*Re(Ei((0.5 + theta[3]*I)*ln(x)))/n, n = 1 .. trunc(ln(100)/ln(2)) + 1);
T[4] := proc (x) options operator, arrow; -2*(sum(NumberTheory:-\

  Moebius(n)*Re(Ei((.5+I*theta[3])*ln(x)))/n, n = 1 .. 

   trunc(ln(100)/ln(2))+1)) end proc

plot(T[4](x), x = 20 .. 100, title = 'T[4]');

T[5] := x -> -2*sum(Moebius(n)*Re(Ei((0.5 + theta[5]*I)*ln(x)))/n, n = 1 .. trunc(ln(100)/ln(2)) + 1);
T[5] := proc (x) options operator, arrow; -2*(sum(NumberTheory:-\

  Moebius(n)*Re(Ei((.5+I*theta[5])*ln(x)))/n, n = 1 .. 

   trunc(ln(100)/ln(2))+1)) end proc

plot(T[5](x), x = 20 .. 100, title = 'T[5]');

f10 := x -> Li(x) - 2*sum(Re(Ei((1/2 + theta[n]*I)*ln(x))), n = 1 .. 10) - ln(2) + int(1/(t*(t^2 - 1)*ln(t)), t = x .. infinity);
f10 := proc (x) options operator, arrow; Li(x)-2*(sum(Re(Ei((1/2\

  +I*theta[n])*ln(x))), n = 1 .. 10))-ln(2)+int(1/(t*(t^2-1)*ln(\

  t)), t = x .. infinity) end proc

R10 := x -> sum(Moebius(l)*f10(x^(1/l))/l, l = 1 .. 8);
R10 := proc (x) options operator, arrow; sum(NumberTheory:-Moebi\

  us(l)*f10(x^(1/l))/l, l = 1 .. 8) end proc

plot1 := plot(R10(x), x = 2 .. 100);

plot2 := plot(pi(x), x = 2 .. 100);

display([plot1, plot2]);

f29 := x -> Li(x) - 2*sum(Re(Ei((1/2 + theta[n]*I)*ln(x))), n = 1 .. 29) - ln(2) + int(1/(t*(t^2 - 1)*ln(t)), t = x .. infinity);
f29 := proc (x) options operator, arrow; Li(x)-2*(sum(Re(Ei((1/2\

  +I*theta[n])*ln(x))), n = 1 .. 29))-ln(2)+int(1/(t*(t^2-1)*ln(\

  t)), t = x .. infinity) end proc

R29 := x -> sum(Moebius(l)*f29(x^(1/l))/l, l = 1 .. 8);
R29 := proc (x) options operator, arrow; sum(NumberTheory:-Moebi\

  us(l)*f29(x^(1/l))/l, l = 1 .. 8) end proc

plot3 := plot(R29(x), x = 2 .. 100);

NULL;
display([plot1, plot2, plot3]);

R29(100);
R10(100);
pi(100);
                          25.25165721

                          25.28503922

                               25

RR10 := x -> sum(Moebius(l)*f10(x^(1/l))/l, l = 1 .. trunc(ln(1000)/ln(2)) + 1);
RR10 := proc (x) options operator, arrow; sum(NumberTheory:-Moeb\

  ius(l)*f10(x^(1/l))/l, l = 1 .. trunc(ln(1000)/ln(2))+1) end 

   proc

RR10(1000);
pi(1000);
                          168.1328341

                              168

RR29 := x -> sum(Moebius(l)*f29(x^(1/l))/l, l = 1 .. trunc(ln(1000)/ln(2)) + 1);
RR29 := proc (x) options operator, arrow; sum(NumberTheory:-Moeb\

  ius(l)*f29(x^(1/l))/l, l = 1 .. trunc(ln(1000)/ln(2))+1) end 

   proc

RR29(1000);
                          167.6113955

P1 := plot(RR29(x), x = 880 .. 930);

P2 := plot(pi(x), x = 880 .. 930);

display([P1, P2]);

f0 := x -> Li(x) - ln(2) + int(1/(t*(t^2 + 1)*ln(t)), t = x .. infinity);
f0 := proc (x) options operator, arrow; Li(x)-ln(2)+int(1/(t*(t^\

  2+1)*ln(t)), t = x .. infinity) end proc

RR0 := x -> sum(Moebius(l)*f0(x^(1/l))/l, l = 1 .. trunc(ln(1000)/ln(2)) + 1);
RR0 := proc (x) options operator, arrow; sum(NumberTheory:-Moebi\

  us(l)*f0(x^(1/l))/l, l = 1 .. trunc(ln(1000)/ln(2))+1) end proc

P3 := plot(RR0(x), x = 880 .. 930);

NULL;
display([P1, P2, P3]);

P4 := plot(RR10(x), x = 880 .. 930);

display([P1, P2, P3, P4], color = [green, blue, purple, yellow]);

evalf(Li(2)), evalf(ln(2));
                   1.045163780, 0.6931471806

evalf(li(2));
                             li(2)

evalf(Ei(2));
                          4.954234356

evalf(Int(1/ln(t), t = 0 .. 2));
                        Float(undefined)

evalf(Ei(ln(2)));
                          1.045163780

Li(1000.);
                          177.6096580

isprime, [$ (1 .. 100)];
isprime, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 

  17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 

  33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 

  49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 

  65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 

  81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 

  97, 98, 99, 100]

nops(select(isprime, [$ (1 .. 100)]));
                               25

theta[1];
                           14.134725

evalf(Ei((1/2 + theta[1]*I)*ln(x)));
             Ei((0.5000000000 + 14.134725 I) ln(x))

evalf(Ei(ln(1/2 + theta[1]*I)));
                  4.386989035 + 6.632175089 I

plot(Li(x), x = 0 .. 5);

To Maple support:

I see 2 problems here. Maple solves the ode using series method.

First problem: Using odetest shows the syntax according to help does not work. Which is

           odetest(sol, ODE, series, point = 0);

The above gives internal error.

When changing to the following syntax

         odetest(sol,ODE,type='series',point=0); 

No internal error.

So help page should be corrected.

The second problem is that Maple odetest does not return 0 on its own solution. I verified manually that the solution is correct actually. So I do not know why maple does not return zero here. Simplfication does not help. 
 

interface(version);

`Standard Worksheet Interface, Maple 2022.0, Windows 10, March 8 2022 Build ID 1599809`

restart;

Order:=6;
ode:=x^2*diff(diff(y(x),x),x)+x^2*diff(y(x),x)+y(x) = 0;
maple_sol:=dsolve(ode,y(x),type='series',x=0):
odetest(maple_sol,ode,series,point=0);
odetest(maple_sol,ode,'series',point=0);

6

x^2*(diff(diff(y(x), x), x))+x^2*(diff(y(x), x))+y(x) = 0

Error, (in odetest/series) complex argument to max/min: 13/2-1/2*I*3^(1/2)

Error, (in odetest/series) complex argument to max/min: 13/2-1/2*I*3^(1/2)

odetest(maple_sol,ode,type='series',point=0); #This should return zero, but it does not.

-I*3^(1/2)*x^(3/2-((1/2)*I)*3^(1/2))*(series(-1/2-(I*3^(1/2)/((I*3^(1/2)-1)*(I*3^(1/2)-2)))*x-((1/4)*((5*I)*3^(1/2)+3)/((I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^2-((1/6)*((8*I)*3^(1/2)+9)/((I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^3-((7/16)*((3*I)*3^(1/2)+5)/((I*3^(1/2)-5)*(I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^4+O(x^5),x,5))*_C1+((1/2)*I)*3^(1/2)*x^(3/2+((1/2)*I)*3^(1/2))*(series(1-(1/2)*x+(((1/2)*I)*3^(1/2)/((1+I*3^(1/2))*(I*3^(1/2)+2)))*x^2-((1/12)*((5*I)*3^(1/2)-3)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)))*x^3+((1/24)*(-9+(8*I)*3^(1/2))/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)))*x^4-((7/80)*((3*I)*3^(1/2)-5)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)*(I*3^(1/2)+5)))*x^5+O(x^6),x,6))*_C2+_C1*x^(5/2-((1/2)*I)*3^(1/2))*(series(-I*3^(1/2)/((I*3^(1/2)-1)*(I*3^(1/2)-2))-((1/2)*((5*I)*3^(1/2)+3)/((I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x-((1/2)*((8*I)*3^(1/2)+9)/((I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^2-((7/4)*((3*I)*3^(1/2)+5)/((I*3^(1/2)-5)*(I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^3+O(x^4),x,4))+_C2*x^(5/2+((1/2)*I)*3^(1/2))*(series(I*3^(1/2)/((1+I*3^(1/2))*(I*3^(1/2)+2))-((1/2)*((5*I)*3^(1/2)-3)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)))*x+((1/2)*(-9+(8*I)*3^(1/2))/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)))*x^2-((7/4)*((3*I)*3^(1/2)-5)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)*(I*3^(1/2)+5)))*x^3+O(x^4),x,4))+_C1*x^(3/2-((1/2)*I)*3^(1/2))*(series(-1/2-(I*3^(1/2)/((I*3^(1/2)-1)*(I*3^(1/2)-2)))*x-((1/4)*((5*I)*3^(1/2)+3)/((I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^2-((1/6)*((8*I)*3^(1/2)+9)/((I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^3-((7/16)*((3*I)*3^(1/2)+5)/((I*3^(1/2)-5)*(I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^4+O(x^5),x,5))+_C2*x^(3/2+((1/2)*I)*3^(1/2))*(series(-1/2+(I*3^(1/2)/((1+I*3^(1/2))*(I*3^(1/2)+2)))*x-((1/4)*((5*I)*3^(1/2)-3)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)))*x^2+((1/6)*(-9+(8*I)*3^(1/2))/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)))*x^3-((7/16)*((3*I)*3^(1/2)-5)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)*(I*3^(1/2)+5)))*x^4+O(x^5),x,5))-((1/2)*I)*3^(1/2)*x^(3/2-((1/2)*I)*3^(1/2))*(series(1-(1/2)*x-(((1/2)*I)*3^(1/2)/((I*3^(1/2)-1)*(I*3^(1/2)-2)))*x^2-((1/12)*((5*I)*3^(1/2)+3)/((I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^3-((1/24)*((8*I)*3^(1/2)+9)/((I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^4-((7/80)*((3*I)*3^(1/2)+5)/((I*3^(1/2)-5)*(I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^5+O(x^6),x,6))*_C1+I*3^(1/2)*x^(3/2+((1/2)*I)*3^(1/2))*(series(-1/2+(I*3^(1/2)/((1+I*3^(1/2))*(I*3^(1/2)+2)))*x-((1/4)*((5*I)*3^(1/2)-3)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)))*x^2+((1/6)*(-9+(8*I)*3^(1/2))/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)))*x^3-((7/16)*((3*I)*3^(1/2)-5)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)*(I*3^(1/2)+5)))*x^4+O(x^5),x,5))*_C2+x^(5/2-((1/2)*I)*3^(1/2))*(series(-1/2-(I*3^(1/2)/((I*3^(1/2)-1)*(I*3^(1/2)-2)))*x-((1/4)*((5*I)*3^(1/2)+3)/((I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^2-((1/6)*((8*I)*3^(1/2)+9)/((I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^3-((7/16)*((3*I)*3^(1/2)+5)/((I*3^(1/2)-5)*(I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^4+O(x^5),x,5))*_C1+x^(5/2+((1/2)*I)*3^(1/2))*(series(-1/2+(I*3^(1/2)/((1+I*3^(1/2))*(I*3^(1/2)+2)))*x-((1/4)*((5*I)*3^(1/2)-3)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)))*x^2+((1/6)*(-9+(8*I)*3^(1/2))/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)))*x^3-((7/16)*((3*I)*3^(1/2)-5)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)*(I*3^(1/2)+5)))*x^4+O(x^5),x,5))*_C2+(1/2)*x^(3/2-((1/2)*I)*3^(1/2))*(series(1-(1/2)*x-(((1/2)*I)*3^(1/2)/((I*3^(1/2)-1)*(I*3^(1/2)-2)))*x^2-((1/12)*((5*I)*3^(1/2)+3)/((I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^3-((1/24)*((8*I)*3^(1/2)+9)/((I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^4-((7/80)*((3*I)*3^(1/2)+5)/((I*3^(1/2)-5)*(I*3^(1/2)-4)*(I*3^(1/2)-3)*(I*3^(1/2)-2)*(I*3^(1/2)-1)))*x^5+O(x^6),x,6))*_C1+(1/2)*x^(3/2+((1/2)*I)*3^(1/2))*(series(1-(1/2)*x+(((1/2)*I)*3^(1/2)/((1+I*3^(1/2))*(I*3^(1/2)+2)))*x^2-((1/12)*((5*I)*3^(1/2)-3)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)))*x^3+((1/24)*(-9+(8*I)*3^(1/2))/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)))*x^4-((7/80)*((3*I)*3^(1/2)-5)/((1+I*3^(1/2))*(I*3^(1/2)+2)*(I*3^(1/2)+3)*(I*3^(1/2)+4)*(I*3^(1/2)+5)))*x^5+O(x^6),x,6))*_C2

 


 

Download problems_with_series_solution.mw

 

How can I found the area of the region bounded by 

y=e^xcos(x), y=o, x=−π/2, x= π/2 ?

I have an example where I try to calculate an infinite sum (G&R1.641.1)  in Maple 2022 (or 2021).  I get a different numerical result when I evaluate the sum if I express the coefficients c(m) in the sum using Maple's doublefactorial function for m!! (c1(m)) or the equivalent expression involving the factorial function (c2(m)).  Only the latter gives the correct value for the sum.  This happens even though Maple gives the same numerical value for the coefficients c1(m) and c2(m).  What's going on?? Please see the attached spreadsheet.

Download doublefactorial_test.mw

I recently upgraded to Maple 2022 just to use the new latex command. It seems I still can't export DataFrame types, I'm very disappointed. What am I doing wrong?

restart:
test:= DataFrame( [[1]], columns = [1] );
latex(test);

returns:

Error, (in DataFrame:-type) invalid input: subtype expects its 2nd argument, _t, to be of type type, but received And(symbol,satisfies(u -> substring(u,1 .. 9) = ('`\\mapleref`')))

Using File > Export As > LaTeX also doesn't work.
Printing the function call using printlevel := 100000: returns the following:

I've attached the worksheet for reference. Demo.mw
Does anyone know a workaround?

-Thanks for the Help

Irrespective of what help says, both series and taylor return series(...) rather that big-O expression

From help:

> series(x/(1-x-x^2), x=0);
series(1*x+1*x^2+2*x^3+3*x^4+5*x^5+O(x^6),x,6)
> taylor(sin(x),x=Pi);
series(-1*(x-Pi)+1/6*(x-Pi)^3-1/120*(x-Pi)^5+O((x-Pi)^7),x=-(-Pi),7)
 

I am using the method of alias(seq(c[k] = _C||k, k = 1..10)); for better latex of constants generated from solving an ode as recommended. See this for example. 

This works well 99.99% of the time. But now I noticed this in Maple 2022. Is this a display issue? When the constant is inside an inert Int it does not display the same as the other constant outside. Also the Latex is not the same. Even though lprint shows they are both correct.

This is the worksheet itself


 

restart;

interface(version);

`Standard Worksheet Interface, Maple 2022.0, Windows 10, March 8 2022 Build ID 1599809`

alias(seq(c[k] = _C||k, k = 1..10));
ode:=x*diff(y(x),x$2)-cos(x)*diff(y(x),x)+sin(x)*y(x)=2;
sol:=dsolve(ode);
lprint(sol)

c[1], c[2], c[3], c[4], c[5], c[6], c[7], c[8], c[9], c[10]

x*(diff(diff(y(x), x), x))-cos(x)*(diff(y(x), x))+sin(x)*y(x) = 2

y(x) = (c[2]+Int((c[1]+2*x)/(exp(Ci(x))*x^2), x))*exp(Ci(x))*x

y(x) = (c[2]+Int((c[1]+2*x)/exp(Ci(x))/x^2,x))*exp(Ci(x))*x

latex(sol)

y \! \left(x \right) =
\left(c_{2}+\textcolor{gray}{\int}\frac{\mathit{c[1]} +2 x}{{\mathrm e}^{\mathrm{Ci}\left(x \right)} x^{2}}\textcolor{gray}{d}x \right) {\mathrm e}^{\mathrm{Ci}\left(x \right)} x

restart;

ode:=x*diff(y(x),x$2)-cos(x)*diff(y(x),x)+sin(x)*y(x)=2;
sol:=dsolve(ode);
lprint(sol)

x*(diff(diff(y(x), x), x))-cos(x)*(diff(y(x), x))+sin(x)*y(x) = 2

y(x) = (_C2+Int((_C1+2*x)/(exp(Ci(x))*x^2), x))*exp(Ci(x))*x

y(x) = (_C2+Int((_C1+2*x)/exp(Ci(x))/x^2,x))*exp(Ci(x))*x

 


 

Download april_25_2022.mw

 

 

Hi everyone! I'd really appreciate if I could get pointed in the right direction as I am a brand new maple user.

So im trying to solve this constrainted optimization problem (See picture) using Maple symbollically. I believe I should have a closed form solution given I can substitute the one constraint into the objective function. Specifically closed form solutions for the three phi variables.

Can someone point me in the right direction as to how I should go about this? I've already taken first order conditions and tried to using the solve() function to no avail, realizing my sytem of equations weren't linear );. 

I have problems with tasks.

If you have some usefull commands, you select them all, right-click and select 'create task'. You now get a button in the 'task'-pane in Maple you can use whenever you need to insert these commands- - - brilliant!!

But now I want to modify these tasks and delete the ones I don't use anymore or the ones I made by mistake.

Right-click on the task does nothing.

Selecting 'tools' from the menu and then 'tasks' allows me to see the tasks I have made, but not to modify them or delete them

How do I modify or delete a task??

 

/Rasmus Post

First 31 32 33 34 35 Page 33 of 35