Maple 2023 Questions and Posts

These are Posts and Questions associated with the product, Maple 2023

Someone added "Duplicate question" tag on this question.

How is this duplicate question? Where is the duplicate question? 

Is this a bug?

Accoding to this help page 

A derived class must not redeclare (via a local or export declaration) any members inherited from the base class

this example does not do this. But derived class gets an error when using ::static on a method declared in base class and this only shows up when using kernelopts('assertlevel'=2):

So it is either kernelopts('assertlevel'=2): is wrong or help is wrong.  Here is example

972100

restart;

972100

interface(version);

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

interface(warnlevel=4);
kernelopts('assertlevel'=2):

3

module bank_account()
  option object;
  local account_id::integer:=0;
  
  export ModuleCopy::static:=proc(_self, proto::bank_account, account_id::integer,$)
         if nargs=2 then
            _self:-account_id := proto:-account_id;
         else
            _self:-account_id := account_id;
         fi;
  end proc;
end module;

module bank_account () local account_id::integer; option object; end module

module saving_account()
  option object(bank_account);

  ModuleCopy::static := proc(_self, proto::saving_account, account_id::integer,$)
         if nargs=2 then
            _self:-account_id := proto:-account_id;
         else
            _self:-account_id := account_id;
         fi;
  end proc;
end module;

Error, (in saving_account) type `static` does not exist

 


Download static_error.mw

Removing the line kernelopts('assertlevel'=2): the error goes away. Also keeping kernelopts('assertlevel'=2): but removing the ::static from the derived class the error goes way.

What is going on?

Maple 2023 on windows 10.

There appears to be a bug in Maple 2023.0 (Build ID 1689885)  that does not allow you to access submenus when the window is maximized.  For example, trying to select "Insert --> Execution Group" does not work, nor does any other submenu (the submenu will not display and is not accessible).  The only workaround is to un-maximize the window, select the submenu (for example "Insert --> Execution Group --> Before Cursor"), and then re-maximize the window.  Everything works as it should as long as the window is not maximized.  This is on Microsoft Windows 11 with a 2160p monitor.  Any suggestions on how to fix this are appreciated.

I compute some properties of some graphs and try to store their edge sets and their corresponding properties. I stored them using matrices, but now I want to export them to a file (csv format).

with(GraphTheory):
graphs := [seq(RandomGraphs:-RandomGraph(8, 9), 1 .. 10)]:
M0:=Edges~(graphs):
M1:=Girth~(graphs):
M2:=Diameter~(graphs):
B := Matrix(1..3,[M0,M1,M2]);
Export("E:/B.csv", B):

 

he exported file's data is messy, and it is difficult for me to observe the corresponding properties of the graphs.  I hope they can be sorted into three columns as shown below.

PS: I know that if the data has only one column, it can be done as discussed earlier

Export("E:/M.csv", M):

To make the data appear clearer, it is best to keep suitable spacing between columns.

multi_dimensional_data.mw

When making a module with option object, help says 

To create a new class of objects, use the named module declaration syntax with option object.

and it gives an example.  But what is the difference from using the standard module syntax?

This seems to work the same but may be there are cases where it makes a difference?  Here is an example. second case below is what help says to use. But first case is the original module syntax. Both work the same in this simple example.

Can one use either syntax, or is there any subtle difference in semantics that will show under more complicated setup?

interface(version);

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

restart;

1421372

person_class:=module()
  option object;
  export foo::static:=proc(_self,$)
    print("in foo");
    NULL;
  end proc;
end module;

o:=Object(person_class);
o:-foo();

_m2325067887584

_m2325067872032

"in foo"

restart;

1421372

module person_class()
  option object;
  export foo::static:=proc(_self,$)
    print("in foo");
    NULL;
  end proc;
end module;
o:=Object(person_class);
o:-foo();

module person_class () option object; end module

module person_class () option object; end module

"in foo"

 


Download syntax_of_OOP_module.mw

In traditional OOP, one can have a base class with its own constructor. Then extends this class, where the sub class has also its own consturctor. The first thing one does in the extending class constructor is to initialize the base class by calling base class constructor directly, before finishing the initializing of the extending class.

This is done in different ways. in Java the call super(...) is used for example. in C++ it is done by explicit call to base class constructor. Here is an example.  from the net.

But in Maple, I am not able to duplicate this. Because once ModuleCopy is defined (which is the name for the module constructor) in the base class, I can't have another ModuleCopy in the extending/child class. Maple complains because the name already exists.

In the following example, the base class represents a generic ode.

Then the extending/child class is meant to represent a first order ode which extends the base class and adds some specific functions that only meant to apply for first order ode type.

Later on I want to make a second order ode class and so on. All extend the base ode class. 

My question is: How to extend a class in Maple and have the extending/child class constructor call the base class constructor if one can't have more than one constructor when extending?

This Maple help shows one example of inhertance using Objects but this example does not use a constructor in the base of the child. I am assuming one needs to use ModuleCopy as the name for the constuctor since it specifies how an object is copied by Object so can't make my own function and pretend it is the constructor.

restart;

interface(version)

`Standard Worksheet Interface, Maple 2023.0, Windows 10, March 6 2023 Build ID 1689885`

ode_class:=module()
   option object;
   local ode::`=`;
   local x::symbol;
   local y::symbol;

   #constructor
   export ModuleCopy::static := proc( _self::ode_class, proto::ode_class, ode, func, $ )
    _self:-ode:= ode;
    _self:-y:=op(0,func);
    _self:-x:=op(1,func);
   end proc;

   export get_ode::static:=proc(_self,$)
     return _self:-ode;
   end proc;

   export get_x::static:=proc(_self,$)
     return _self:-x;
   end proc;

   export get_y::static:=proc(_self,$)
     return _self:-y;
   end proc;


end module;

_m2586207352192

first_order_ode_class:=module()
   option object(ode_class);
   local is_linear_ode::truefalse;

   #constructor
   export ModuleCopy::static := proc( _self::first_order_ode_class, proto::first_order_ode_class, ode, func, $ )
    #How to call base class above constructor here?

    _self:-is_linear_ode:= false;
   end proc;

   export is_linear::static:=proc(_self,$)
          return _self:-is_linear_ode;
   end proc;
          
end module;

Error, (in first_order_ode_class) export `ModuleCopy` is declared more than once

ode:=Object(first_order_ode_class,diff(y(x),x)=sin(x),y(x));

_m2586207319808

ode:-get_ode();
ode:-is_linear()

false

 


Download base_class_constructor.mw

UPDATE

This is workaround which seems to work OK. do not use ModuleCopy to construct an object, but have custom named function for each base and each child and call these explicitly.

So child constructor will  now call its parent constuctor using the specific name of that function. May be using some convention as  module_name_constuctor(....)   passing it what the parents needs.

The drawback is that now copying an object does not work automatically since ModuleCopy is missing.  but so far, I never had the need to copy one object to another, so I can live without it for now.
 

1421372

restart;

1421372

ode_class:=module()
   option object;
   local ode::`=`;
   local x::symbol;
   local y::symbol;

   #constructor
   export ode_constructor::static := proc( _self,ode::`=`, func, $ )
     print("inside ode_class constrructor");
    _self:-ode:= ode;
    _self:-y:=op(0,func);
    _self:-x:=op(1,func);
    NULL;
   end proc;

   export get_ode::static:=proc(_self,$)
     return _self:-ode;
   end proc;

   export get_x::static:=proc(_self,$)
     return _self:-x;
   end proc;

   export get_y::static:=proc(_self,$)
     return _self:-y;
   end proc;

end module;

_m2325067887904

first_order_ode_class:=module()
   option object(ode_class);
   local is_linear_ode::truefalse;

   #constructor
   export first_order_ode_constructor::static := proc( _self,ode::`=`, func, $ )
      print("inside first_order_ode_class constrructor");
      #call base class constructor
      _self:-ode_constructor(ode,func);
      #finish rest of constructor  
     _self:-is_linear_ode:= false;
     NULL;
   end proc;

   export is_linear::static:=proc(_self,$)
          return _self:-is_linear_ode;
   end proc:
          
end module;

_m2325067872672

o:=Object(first_order_ode_class);
o:-first_order_ode_constructor(diff(y(x),x)=1,y(x));

_m2325067860896

"inside first_order_ode_class constrructor"

"inside ode_class constrructor"

o:-get_ode()

diff(y(x), x) = 1

o:-is_linear()

false

 


I think Maple OOP is not fully OOP,  but it is better than nothing.

Download base_class_no_constructor.mw

 

I was translating some code from Mathematica to Maple. Why MmaTranslator does not know about Mathematica's CubeRoot function? This was added in 2012 (more than 11 years ago).

Is this known? How could one teach Maple's MmaTranslator to convert CubeRoot[x] to surd(x,3)? Is it possible to manually add missing translations to this package? Otherwise I would have to manually edit lots of code and do this myself each time.

 

restart; 
with(MmaTranslator);
FromMma(`CubeRoot[9]`);

Gives CubeRoot(9) it should be surd(9, 3)

Version 2023 on windows 10

We can read all the graphs in a file at once, or we can use an iterative approach. But can I specify a certain number of lines to read? 

with(GraphTheory):
g:=ImportGraph("E:/5cc3free.txt", graph6, output=list)

The contents of 5cc3free.txt are as follows (all 5-vertex C_3 free connected graphs).  There are 6 lines.

D?{
D@s
DBw
DFw
DDW
DqK

The reason for wanting this kind of operation is that sometimes there are tens of thousands of graphs stored in a single file, and I want to read them in batches. For example, I want to extract the graph data from lines 1-2, 3-4, and 5-6 in batches. How can I accomplish this?

In the previous example, a small dataset was used for demonstration purposes. In the following example, which involves all 8-vertex connected graphs (see the attachment graph8c.txt), I want to extract the graphs from lines 200-300. 

I found that readline always starts reading from the first line of a file, so the efficiency may not be very high.

Here are three algebraic numbers: (In fact, they are solutions to some equation. See the attachment below.)

bSol := {RootOf(1216*_Z^4 + (264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 + 408*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 - 1580*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 - 6832*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 + 3508*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 + 9944*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 + 9948*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 - 10752*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) + 5204)*_Z^3 + (891*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 + 1652*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 - 4748*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 - 24076*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 + 5354*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 + 35356*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 + 29668*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 - 196*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) + 3971)*_Z^2 + (506*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 + 980*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 - 2264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 - 12420*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 + 3676*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 + 11596*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 + 33800*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 - 7772*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) + 1210)*_Z - 473*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^8 - 720*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^7 + 2560*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^6 + 10960*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^5 - 8034*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^4 - 13840*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^3 - 9304*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266)^2 + 1104*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 0.2246 .. 0.2266) - 1133, index = real[2]), RootOf(1216*_Z^4 + (264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 + 408*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 - 1580*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 - 6832*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 + 3508*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 + 9944*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 + 9948*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 - 10752*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) + 5204)*_Z^3 + (891*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 + 1652*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 - 4748*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 - 24076*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 + 5354*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 + 35356*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 + 29668*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 - 196*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) + 3971)*_Z^2 + (506*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 + 980*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 - 2264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 - 12420*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 + 3676*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 + 11596*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 + 33800*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 - 7772*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) + 1210)*_Z - 473*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^8 - 720*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^7 + 2560*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^6 + 10960*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^5 - 8034*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^4 - 13840*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^3 - 9304*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68)^2 + 1104*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 1.671 .. 1.68) - 1133, index = real[2]), RootOf(1216*_Z^4 + (264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 + 408*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 - 1580*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 - 6832*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 + 3508*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 + 9944*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 + 9948*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 - 10752*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) + 5204)*_Z^3 + (891*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 + 1652*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 - 4748*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 - 24076*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 + 5354*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 + 35356*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 + 29668*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 - 196*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) + 3971)*_Z^2 + (506*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 + 980*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 - 2264*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 - 12420*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 + 3676*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 + 11596*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 + 33800*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 - 7772*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) + 1210)*_Z - 473*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^8 - 720*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^7 + 2560*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^6 + 10960*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^5 - 8034*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^4 - 13840*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^3 - 9304*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657)^2 + 1104*RootOf(11*_Z^9 + 17*_Z^8 - 64*_Z^7 - 280*_Z^6 + 142*_Z^5 + 370*_Z^4 + 376*_Z^3 - 96*_Z^2 + 47*_Z - 11, 2.648 .. 2.657) - 1133, index = real[2])}:

One may check that 11_X9-47_X8+96_X7-376_X6-370_X5-142_X4+280_X3+64_X2-17_X-11 is an “annihilating” polynomial of each of them (using another computer algebra system); accordingly, the degree of the minimal polynomial cannot be greater than 9. However, Maple's output indicates that the minimal polynomial is of degree 36

restart;

alias(`~`[`=`](alpha__ || (1 .. 3), ` $`, RootOf(11*_Z^9+17*_Z^8-64*_Z^7-280*_Z^6+142*_Z^5+370*_Z^4+376*_Z^3-96*_Z^2+47*_Z-11, .2246 .. .2266), RootOf(11*_Z^9+17*_Z^8-64*_Z^7-280*_Z^6+142*_Z^5+370*_Z^4+376*_Z^3-96*_Z^2+47*_Z-11, 1.671 .. 1.68), RootOf(11*_Z^9+17*_Z^8-64*_Z^7-280*_Z^6+142*_Z^5+370*_Z^4+376*_Z^3-96*_Z^2+47*_Z-11, 2.648 .. 2.657)))

({PDETools:-Solve})({`~`[`>=`](a, b, ` $`, 0), a^5*b+4*a^4*b^2+4*a^3*b^3-7*a^4*b-6*a^2*b^3-7*a*b^4+b^5-6*a^3*b+12*a^2*b^2+4*b^4+4*a^3-6*a*b^2+4*b^3+4*a^2-7*a*b+a = 0, a <> b})
bSol := `~`[subs](%, b)

evalf[2*Digits](`~`[eval](11*_X^9-47*_X^8+96*_X^7-376*_X^6-370*_X^5-142*_X^4+280*_X^3+64*_X^2-17*_X-11, `~`[`=`](_X, bSol)))

{RootOf(1216*_Z^4+(264*alpha__1^8+408*alpha__1^7-1580*alpha__1^6-6832*alpha__1^5+3508*alpha__1^4+9944*alpha__1^3+9948*alpha__1^2-10752*alpha__1+5204)*_Z^3+(891*alpha__1^8+1652*alpha__1^7-4748*alpha__1^6-24076*alpha__1^5+5354*alpha__1^4+35356*alpha__1^3+29668*alpha__1^2-196*alpha__1+3971)*_Z^2+(506*alpha__1^8+980*alpha__1^7-2264*alpha__1^6-12420*alpha__1^5+3676*alpha__1^4+11596*alpha__1^3+33800*alpha__1^2-7772*alpha__1+1210)*_Z-473*alpha__1^8-720*alpha__1^7+2560*alpha__1^6+10960*alpha__1^5-8034*alpha__1^4-13840*alpha__1^3-9304*alpha__1^2+1104*alpha__1-1133, index = real[2]), RootOf(1216*_Z^4+(264*alpha__2^8+408*alpha__2^7-1580*alpha__2^6-6832*alpha__2^5+3508*alpha__2^4+9944*alpha__2^3+9948*alpha__2^2-10752*alpha__2+5204)*_Z^3+(891*alpha__2^8+1652*alpha__2^7-4748*alpha__2^6-24076*alpha__2^5+5354*alpha__2^4+35356*alpha__2^3+29668*alpha__2^2-196*alpha__2+3971)*_Z^2+(506*alpha__2^8+980*alpha__2^7-2264*alpha__2^6-12420*alpha__2^5+3676*alpha__2^4+11596*alpha__2^3+33800*alpha__2^2-7772*alpha__2+1210)*_Z-473*alpha__2^8-720*alpha__2^7+2560*alpha__2^6+10960*alpha__2^5-8034*alpha__2^4-13840*alpha__2^3-9304*alpha__2^2+1104*alpha__2-1133, index = real[2]), RootOf(1216*_Z^4+(264*alpha__3^8+408*alpha__3^7-1580*alpha__3^6-6832*alpha__3^5+3508*alpha__3^4+9944*alpha__3^3+9948*alpha__3^2-10752*alpha__3+5204)*_Z^3+(891*alpha__3^8+1652*alpha__3^7-4748*alpha__3^6-24076*alpha__3^5+5354*alpha__3^4+35356*alpha__3^3+29668*alpha__3^2-196*alpha__3+3971)*_Z^2+(506*alpha__3^8+980*alpha__3^7-2264*alpha__3^6-12420*alpha__3^5+3676*alpha__3^4+11596*alpha__3^3+33800*alpha__3^2-7772*alpha__3+1210)*_Z-473*alpha__3^8-720*alpha__3^7+2560*alpha__3^6+10960*alpha__3^5-8034*alpha__3^4-13840*alpha__3^3-9304*alpha__3^2+1104*alpha__3-1133, index = real[2])}

 

{-0.7765721e-11, -0.40e-16, -0.2e-17}

(1)

`~`[`@`(evala, Minpoly)](bSol, _X)

{-17799961-(10941904462/121)*_X+(61823634144236824/14641)*_X^9-(31748793508955524/14641)*_X^8-(101389427707536/14641)*_X^7+(2187899683524768/14641)*_X^6+(660533278629392/14641)*_X^5-(35195970681077/1331)*_X^4+(4540912173250/1331)*_X^3-(226104907168/1331)*_X^2+_X^36+(562/11)*_X^35+(1306112/1331)*_X^34-(18882494/14641)*_X^33-(1885893201/14641)*_X^32-(8021957456/14641)*_X^31+(128807680096/14641)*_X^30+(601684442192/14641)*_X^29+(136952065956/14641)*_X^28-(7313279407608/14641)*_X^27-(20755313257248/14641)*_X^26-(72279502775080/14641)*_X^25-(235147325265588/14641)*_X^24+(407012808852624/14641)*_X^23-(2003920103008/1331)*_X^22-(2647129453154576/14641)*_X^21-(5329535956015778/14641)*_X^20-(11189597881735324/14641)*_X^19+(18014890583299168/14641)*_X^18-(25692630236542548/14641)*_X^17+(57603516516708946/14641)*_X^16-(875402744452912/121)*_X^15+(36990665431348512/14641)*_X^14+(67887070781490608/14641)*_X^13+(643327218250876/1331)*_X^12-(81888059180050616/14641)*_X^11+(306280599794336/14641)*_X^10}

(2)

`~`[PolynomialTools[MinimalPolynomial]](bSol, _X)

{14641*_X^36+748022*_X^35+14367232*_X^34-18882494*_X^33-1885893201*_X^32-8021957456*_X^31+128807680096*_X^30+601684442192*_X^29+136952065956*_X^28-7313279407608*_X^27-20755313257248*_X^26-72279502775080*_X^25-235147325265588*_X^24+407012808852624*_X^23-22043121133088*_X^22-2647129453154576*_X^21-5329535956015778*_X^20-11189597881735324*_X^19+18014890583299168*_X^18-25692630236542548*_X^17+57603516516708946*_X^16-105923732078802352*_X^15+36990665431348512*_X^14+67887070781490608*_X^13+7076599400759636*_X^12-81888059180050616*_X^11+306280599794336*_X^10+61823634144236824*_X^9-31748793508955524*_X^8-101389427707536*_X^7+2187899683524768*_X^6+660533278629392*_X^5-387155677491847*_X^4+49950033905750*_X^3-2487153978848*_X^2-1323970439902*_X-260609229001}

(3)

factor({{-260609229001-1323970439902*_X+407012808852624*_X^23-22043121133088*_X^22-2647129453154576*_X^21-5329535956015778*_X^20-11189597881735324*_X^19+18014890583299168*_X^18-25692630236542548*_X^17+57603516516708946*_X^16-105923732078802352*_X^15+36990665431348512*_X^14+67887070781490608*_X^13+7076599400759636*_X^12-81888059180050616*_X^11+306280599794336*_X^10+61823634144236824*_X^9-31748793508955524*_X^8-101389427707536*_X^7+2187899683524768*_X^6+660533278629392*_X^5-387155677491847*_X^4+49950033905750*_X^3-2487153978848*_X^2+14641*_X^36+748022*_X^35+14367232*_X^34-18882494*_X^33-1885893201*_X^32-8021957456*_X^31+128807680096*_X^30+601684442192*_X^29+136952065956*_X^28-7313279407608*_X^27-20755313257248*_X^26-72279502775080*_X^25-235147325265588*_X^24}[], {-17799961-(10941904462/121)*_X+(407012808852624/14641)*_X^23-(2003920103008/1331)*_X^22-(2647129453154576/14641)*_X^21-(5329535956015778/14641)*_X^20-(11189597881735324/14641)*_X^19+(18014890583299168/14641)*_X^18-(25692630236542548/14641)*_X^17+(57603516516708946/14641)*_X^16-(875402744452912/121)*_X^15+(36990665431348512/14641)*_X^14+(67887070781490608/14641)*_X^13+(643327218250876/1331)*_X^12-(81888059180050616/14641)*_X^11+(306280599794336/14641)*_X^10+(61823634144236824/14641)*_X^9-(31748793508955524/14641)*_X^8-(101389427707536/14641)*_X^7+(2187899683524768/14641)*_X^6+(660533278629392/14641)*_X^5-(35195970681077/1331)*_X^4+(4540912173250/1331)*_X^3-(226104907168/1331)*_X^2+_X^36+(562/11)*_X^35+(1306112/1331)*_X^34-(18882494/14641)*_X^33-(1885893201/14641)*_X^32-(8021957456/14641)*_X^31+(128807680096/14641)*_X^30+(601684442192/14641)*_X^29+(136952065956/14641)*_X^28-(7313279407608/14641)*_X^27-(20755313257248/14641)*_X^26-(72279502775080/14641)*_X^25-(235147325265588/14641)*_X^24}[]})

{(11*_X^9-47*_X^8+96*_X^7-376*_X^6-370*_X^5-142*_X^4+280*_X^3+64*_X^2-17*_X-11)*(83746429305*_X-163433814*_X^23-1409885474*_X^22+7323055726*_X^21+92878340298*_X^20+291711433585*_X^19-28358008525*_X^18-1146850616945*_X^17+2003142623069*_X^16+7054039060380*_X^15+10860482240404*_X^14+4410674835220*_X^13-23715924119108*_X^12+39935154074341*_X^11-76564178781009*_X^10+246946329497683*_X^9-303627746551159*_X^8+41661161235738*_X^7+181533634595246*_X^6-146573328877410*_X^5+44279227597786*_X^4-3813039868649*_X^3+234521505317*_X^2+1331*_X^27+73689*_X^26+1609349*_X^25+4562111*_X^24+23691748091), (1/14641)*(11*_X^9-47*_X^8+96*_X^7-376*_X^6-370*_X^5-142*_X^4+280*_X^3+64*_X^2-17*_X-11)*(83746429305*_X-163433814*_X^23-1409885474*_X^22+7323055726*_X^21+92878340298*_X^20+291711433585*_X^19-28358008525*_X^18-1146850616945*_X^17+2003142623069*_X^16+7054039060380*_X^15+10860482240404*_X^14+4410674835220*_X^13-23715924119108*_X^12+39935154074341*_X^11-76564178781009*_X^10+246946329497683*_X^9-303627746551159*_X^8+41661161235738*_X^7+181533634595246*_X^6-146573328877410*_X^5+44279227597786*_X^4-3813039868649*_X^3+234521505317*_X^2+1331*_X^27+73689*_X^26+1609349*_X^25+4562111*_X^24+23691748091)}

(4)

``


 

Download minpoly.mw

Isn't the results incorrect? 

Let us begin with the official descriptions of loops. The Maple® documentation claims that: 

Note that the examples above don't necessarily illustrate the best way to perform these operations. Often a functional form like seqmapadd, or mul is far more efficient.

Mma's tech tutorial also claims that: 

If you have a big program full of IfDoReturn, etc., you're probably not doing things right
Often, however, you can make more elegant and efficient programs using the functional programming constructs ….

Also, MatLab's Techniques to Improve Performance and Measure and Improve GPU Performance claims that: 

You can achieve better performance by rewriting loops to make use of higher-dimensional operations. The performance of a wide variety of element-wise functions can be improved … instead of looping over the matrices.

Well, I'm confused. Why did the official help page say like this? Actually, I find that lots of users in this forum still (and usually) use traditional for-loops instead of something which fits in with the alleged functional programming ideas. Did I misconstrue those statements? 
(For instance, as for the functional operations, it's unfortunate that Maple's built-in map cannot operate on arbitrary expression trees of any depth; so I have to use the loops to apply some procedure indirectly, which is not so convenient. In my opinion, owing to such limitation, people have to, and then gradually tend to, use the loops.) 

Is there a mathematical reason why Maple does not allow expansion point for solving an ode using series solution to be different than where initial conditions are located?

I do not see why this restriction is there. Here is first order ode, where expansion point is x=1 and initial condiitons are also at x=1

restart;
ode:=diff(y(x),x)=x^3;
dsolve([ode,y(1)=1],y(x),'series',x=1)

            y(x) = (1 + (x - 1)) + 3/2*(x - 1)^2 + (x - 1)^3 + 1/4*(x - 1)^4 + O((x - 1)^6)

No problem. But when expansion point at x=0, it complains

restart;
ode:=diff(y(x),x)=x^3;
dsolve([ode,y(1)=1],y(x),'series',x=0)

Error, (in dsolve/SERIES) conflicting specifications of the series expansion point: 1 v.s. 0

I know help mentions that it uses initial conditions point for expansion if given, and if no IC is given, then it uses x=point if given and if no x=point is given then it default to x=0.

But my question is, why it does not handle the case when the expansion point is given explicitly and is at a different location than where IC are given? Is this simply just a feature missing that could be added in a future release if needed, or is it due to some mathematical reason that I do not see?

I would have expected it to first find the series solution around the given expansion point, then use the IC to determine the unknown constant after that, just like we normally do when solving an ode using standard methods not using series expansion.

I am using Maple 2023

According to the Wikipedia article

transitive reduction of a directed graph D is another directed graph with the same vertices and as few edges as possible ...

However, I find that in Maple 2023, things become strange:
 (33 arcs or 40 arcs?)

restart;

with(GraphTheory):

showstat(TransitiveReduction, 4)


GraphTheory:-TransitiveReduction := proc(G::GRAPHLN, $)
local D, V, T, i, j, k, A, M, n, flags, B;
       ...
   4   if _EnvDisableExt <> true then
           ...
       elif D <> (':-directed') then
           ...
       else
           ...
       end if;
       ...
end proc
 

 

G__0 := Digraph({[2, 8], [3, 1], [4, 9], [5, 10], [6, 19], [7, 12], [8, 13], [9, 3], [10, 4], [10, 14], [11, 5], [11, 15], [12, 6], [12, 16], [13, 7], [13, 17], [14, 9], [15, 10], [15, 18], [16, 19], [17, 12], [17, 20], [18, 14], [19, 11], [19, 21], [20, 22], [21, 18], [22, 16], [22, 23], [23, 19]})

G__0 := `Graph 1: a directed graph with 23 vertices and 30 arc(s)`

(1)

G__1 := TransitiveReduction(G__0)

G__1 := `Graph 2: a directed graph with 23 vertices and 33 arc(s)`

(2)

_EnvDisableExt := trueG__2 := TransitiveReduction(G__0)

G__2 := `Graph 3: a directed graph with 23 vertices and 40 arc(s)`

(3)

IsIsomorphic(G__1, G__2)

false

(4)

 


 

Download TransReduction.mws

Any bugs? 

G__0 := GraphTheory:-Digraph({[3, 1], [9, 3], [4, 9], [14, 9], [10, 4], [5, 10], [15, 10], [11, 5], [19, 11], [12, 6], [7, 12], [17, 12], [13, 7], [8, 13], [2, 8], [10, 14], [18, 14], [11, 15], [6, 19], [16, 19], [23, 19], [13, 17], [15, 18], [21, 18], [12, 16], [22, 16], [22, 23], [20, 22], [19, 21], [17, 20]}):

For example, I'd like to do something like this (and then plot the graph): 

 # display LaTeX markup
label__1 := '"\[\cfrac{\biguplus_\LaTeX}{{\color{red}\leadsto}^\unicode{2254}}\]"':
 # display non-executable notation
label__2 := '(Product(Int(i, j), Sum(k, l)) %assuming convert(log2(1 - 'x'), confrac, subdiagonal))':
 # display graphical object
label__3 := 'plots:-display(plottools:-stellate(plottools:-icosahedron()))':
 # note that the desired one is  instead of 
GraphTheory:-RelabelVertices(`some graph with 3 nodes`, [label__1, label__2, label__3]):

But unfortunately, the second argument of GraphTheory:-RelabelVertices must be of type list({indexed, integer, string, symbol}), and the GraphTheory:-SetVertexAttribute command doesn't work here. Is it possible to do so in Maple® (rather than in other mathematical softwares)?

 

I need your help....

I want to use the maple 2023 kernel in jupyter lab. I followed, to knowledge, the maple installation in windows10 and could not get it to work
after numerous attempts. Maybe it is a path issue that I am getting wrong.
I decided to use it with EndeavourOS distro for Linux as Sagemath interest me. Here it recognizes the kernel but gives syntax errors when
running code; it does not understand ‘:-’ for example. 
Again I used maple suggested installation to no avail.
I used the alternative following comands and it recognizes Maple2023 in the kernels menu but to repeat does not run code, simply gives errors.
sudo pacman -S python-jupyterlab
python -m venv maple2023
source maple2023/bin/activate
pip install jupyter ipykernel
python -m ipykernel install --user --name=maple2023
jupyter kernelspec list
 

The result of is said to be the Catalan constant, but unfortunately, Maple® only returns a lengthy output, so I have to apply the simplify command to get a shorter (and equivalent) form of it. However, I find that these do not work here: 

restart;

expr__1 := expand(value(student[Doubleint](sec(x+y)*sec(x-y)/(sec(x)*sec(y)), x = 0 .. (1/4)*Pi, y = 0 .. (1/4)*Pi)))

MmaTranslator:-Mma:-Chop(evalf(expr__1-Catalan))

((1/2)*I)*dilog(1-(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))+((1/2)*I)*dilog(1-(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/8)*I)*Pi^2+Catalan

 

0

(1)

simplify(expr__1, size = false)-Catalan; Physics:-Simplify(expr__1)-Catalan; simplify(expr__1-Catalan, size = false); Physics:-Simplify(expr__1-Catalan); verify(expr__1, Catalan, equal); is(expr__1 = Catalan); verify(expr__1-Catalan, 0, equal); is(expr__1-Catalan, 0)

((1/2)*I)*dilog(1-(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))+((1/2)*I)*dilog(1-(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/8)*I)*Pi^2

 

((1/2)*I)*dilog(1-(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))+((1/2)*I)*dilog(1-(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-((1/2)*I)*dilog(1+(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-((1/8)*I)*Pi^2

 

((1/8)*I)*(-Pi^2+4*dilog(1-(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))+4*dilog(1-(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-4*dilog(1+(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-4*dilog(1+(1/2)*2^(1/2)-((1/2)*I)*2^(1/2)))

 

((1/8)*I)*(-Pi^2+4*dilog(1-(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))+4*dilog(1-(1/2)*2^(1/2)-((1/2)*I)*2^(1/2))-4*dilog(1+(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-4*dilog(1+(1/2)*2^(1/2)-((1/2)*I)*2^(1/2)))

 

FAIL

 

FAIL

 

FAIL

 

FAIL

(2)

expr__2 := expand(convert(expr__1, polylog, simplifier = NONE))

((1/2)*I)*polylog(2, (1/2)*2^(1/2)-((1/2)*I)*2^(1/2))+((1/2)*I)*polylog(2, (1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-((1/2)*I)*polylog(2, -((1/2)*I)*2^(1/2)-(1/2)*2^(1/2))-((1/2)*I)*polylog(2, -(1/2)*2^(1/2)+((1/2)*I)*2^(1/2))-((1/8)*I)*Pi^2+Catalan

(3)

simplify(expr__2, size = false)-Catalan; Physics:-Simplify(expr__2)-Catalan; simplify(expr__2-Catalan, size = false); Physics:-Simplify(expr__2-Catalan); verify(expr__2, Catalan, equal); is(expr__2 = Catalan); verify(expr__2-Catalan, 0, equal); is(expr__2-Catalan, 0)

0

 

((1/2)*I)*polylog(2, (1/2-(1/2)*I)*2^(1/2))+((1/2)*I)*polylog(2, (1/2+(1/2)*I)*2^(1/2))-((1/2)*I)*polylog(2, (-1/2-(1/2)*I)*2^(1/2))-((1/2)*I)*polylog(2, (-1/2+(1/2)*I)*2^(1/2))-((1/8)*I)*Pi^2

 

0

 

-((1/8)*I)*(Pi^2+4*polylog(2, (-1/2+(1/2)*I)*2^(1/2))+4*polylog(2, (-1/2-(1/2)*I)*2^(1/2))-4*polylog(2, (1/2+(1/2)*I)*2^(1/2))-4*polylog(2, (1/2-(1/2)*I)*2^(1/2)))

 

true

 

true

 

true

 

true

(4)

NULL

Download Unable_to_simplify_expressions_containing_dilog.mw

(By the way, Mathematica's Integrate cannot compute this double integral explicitly.)

First 20 21 22 23 24 25 26 Page 22 of 26