Maple 2023 Questions and Posts

These are Posts and Questions associated with the product, Maple 2023

The (Induced) Subgraph Isomorphism computational problem is, given H and G, determine whether there is a (induced) subgraph isomorphism from H to G. See https://en.wikipedia.org/wiki/Induced_subgraph_isomorphism_problem

In Maple, IsSubgraphIsomorphic(G1,G2)  returns true if G1 is isomorphic to some subgraph of G2. However, it does not provide options for induced subgraphs. For example, 

with(GraphTheory):
claw:=CompleteGraph(1,3);
g:=CompleteGraph(2,2,2,2):
DrawGraph(g);
IsSubgraphIsomorphic(claw,g) #true

So the graph g contains a claw as a subgraph. But every claw in graph g  is non-induced. So g does not contain any induced claw. Maple does not appear to have this feature to determine if a graph contains a induced subgraph isomorphic to another graph. It is unclear whether we can modify some code in IsSubgraphIsomorphic  to achieve this goal.

restart

n := 1

1

(1)

ode1 := (diff(xi^2*(diff(`θ__0`(xi), xi)), xi))/xi^2 = -`θ__0`(xi)^n

(2*xi*(diff(theta__0(xi), xi))+xi^2*(diff(diff(theta__0(xi), xi), xi)))/xi^2 = -theta__0(xi)

(2)

Emden_solution := dsolve({ode1, `θ__0`(0) = 1, (D(`θ__0`))(0) = 0}, `θ__0`(xi))

theta__0(xi) = sin(xi)/xi

(3)

`ξ__1` := Pi

Pi

(4)

alpha := 2.356

2.356

(5)

ode2 := diff(gamma(xi), xi, xi)-2*gamma(xi)/xi^2+alpha^2*gamma(xi) = -`θ__0`(xi)^n*xi^2

diff(diff(gamma(xi), xi), xi)-2*gamma(xi)/xi^2+5.550736*gamma(xi) = -theta__0(xi)*xi^2

(6)

ode2_substituted := subs(Emden_solution, ode2)

diff(diff(gamma(xi), xi), xi)-2*gamma(xi)/xi^2+5.550736*gamma(xi) = -xi*sin(xi)

(7)

ode2_substituted_solution := dsolve({ode2_substituted, gamma(`ξ__1`)+`ξ__1`*(D(gamma))(`ξ__1`) = 0, gamma(0) = 0, (D(gamma))(0) = 0}, gamma(xi))[1]

gamma(xi) = (1/80895305241)*(-17776312500*xi^2*sin(xi)+4601562500000*cos((589/250)*xi)*xi*Pi/(589*cos((89/250)*Pi)*Pi-250*sin((89/250)*Pi))+7812500000*xi*cos(xi)-1953125000000*sin((589/250)*xi)*Pi/(589*cos((89/250)*Pi)*Pi-250*sin((89/250)*Pi))-7812500000*sin(xi))/xi

(8)

ode2_diff := diff(ode2_substituted_solution, xi)

diff(gamma(xi), xi) = (1/80895305241)*(-43365125000*xi*sin(xi)-17776312500*xi^2*cos(xi)-10841281250000*sin((589/250)*xi)*xi*Pi/(589*cos((89/250)*Pi)*Pi-250*sin((89/250)*Pi)))/xi-(1/80895305241)*(-17776312500*xi^2*sin(xi)+4601562500000*cos((589/250)*xi)*xi*Pi/(589*cos((89/250)*Pi)*Pi-250*sin((89/250)*Pi))+7812500000*xi*cos(xi)-1953125000000*sin((589/250)*xi)*Pi/(589*cos((89/250)*Pi)*Pi-250*sin((89/250)*Pi))-7812500000*sin(xi))/xi^2

(9)

diff_at_pi := evalf[5](subs(xi = Pi, rhs(ode2_diff)))

0.41947e-1

(10)

If i solve
"Emden_solution using type=numeric, then how to proceed to get the same diff_at_pi or close with some tolerance"?""

Emden_solution := dsolve({ode1, `θ__0`(0) = 1, (D(`θ__0`))(0) = 0}, `θ__0`(xi), type = numeric)

proc (x_rkf45) local _res, _dat, _vars, _solnproc, _xout, _ndsol, _pars, _n, _i; option `Copyright (c) 2000 by Waterloo Maple Inc. All rights reserved.`; if 1 < nargs then error "invalid input: too many arguments" end if; _EnvDSNumericSaveDigits := Digits; Digits := 15; if _EnvInFsolve = true then _xout := evalf[_EnvDSNumericSaveDigits](x_rkf45) else _xout := evalf(x_rkf45) end if; _dat := Array(1..4, {(1) = proc (_xin) local _xout, _dtbl, _dat, _vmap, _x0, _y0, _val, _dig, _n, _ne, _nd, _nv, _pars, _ini, _par, _i, _j, _k, _src; option `Copyright (c) 2002 by Waterloo Maple Inc. All rights reserved.`; table( [( "complex" ) = false ] ) _xout := _xin; _pars := []; _dtbl := array( 1 .. 4, [( 1 ) = (array( 1 .. 28, [( 1 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 2 ) = (datatype = float[8], order = C_order, storage = rectangular), ( 3 ) = ([0, 0, 0, Array(1..0, 1..2, {}, datatype = float[8], order = C_order)]), ( 4 ) = (Array(1..65, {(1) = 2, (2) = 2, (3) = 0, (4) = 0, (5) = 0, (6) = 0, (7) = 1, (8) = 0, (9) = 0, (10) = 0, (11) = 0, (12) = 0, (13) = 0, (14) = 0, (15) = 0, (16) = 0, (17) = 0, (18) = 1, (19) = 30000, (20) = 0, (21) = 0, (22) = 1, (23) = 4, (24) = 0, (25) = 1, (26) = 15, (27) = 1, (28) = 0, (29) = 1, (30) = 3, (31) = 3, (32) = 0, (33) = 1, (34) = 0, (35) = 0, (36) = 0, (37) = 0, (38) = 0, (39) = 0, (40) = 0, (41) = 0, (42) = 0, (43) = 1, (44) = 0, (45) = 0, (46) = 0, (47) = 0, (48) = 0, (49) = 0, (50) = 50, (51) = 1, (52) = 0, (53) = 0, (54) = 0, (55) = 0, (56) = 0, (57) = 0, (58) = 0, (59) = 10000, (60) = 0, (61) = 1000, (62) = 0, (63) = 0, (64) = -1, (65) = 0}, datatype = integer[8])), ( 5 ) = (Array(1..28, {(1) = .0, (2) = 0.10e-5, (3) = .0, (4) = 0.500001e-14, (5) = .0, (6) = 0.15142976267524639e-1, (7) = .0, (8) = 0.10e-5, (9) = .0, (10) = .0, (11) = .0, (12) = .0, (13) = 1.0, (14) = .0, (15) = .49999999999999, (16) = .0, (17) = 1.0, (18) = 1.0, (19) = .0, (20) = .0, (21) = 1.0, (22) = 1.0, (23) = .0, (24) = .0, (25) = 0.10e-14, (26) = .0, (27) = .0, (28) = .0}, datatype = float[8], order = C_order)), ( 6 ) = (Array(1..2, {(1) = 1.0, (2) = .0}, datatype = float[8], order = C_order)), ( 7 ) = ([Array(1..4, 1..7, {(1, 1) = .0, (1, 2) = .203125, (1, 3) = .3046875, (1, 4) = .75, (1, 5) = .8125, (1, 6) = .40625, (1, 7) = .8125, (2, 1) = 0.6378173828125e-1, (2, 2) = .0, (2, 3) = .279296875, (2, 4) = .27237892150878906, (2, 5) = -0.9686851501464844e-1, (2, 6) = 0.1956939697265625e-1, (2, 7) = .5381584167480469, (3, 1) = 0.31890869140625e-1, (3, 2) = .0, (3, 3) = -.34375, (3, 4) = -.335235595703125, (3, 5) = .2296142578125, (3, 6) = .41748046875, (3, 7) = 11.480712890625, (4, 1) = 0.9710520505905151e-1, (4, 2) = .0, (4, 3) = .40350341796875, (4, 4) = 0.20297467708587646e-1, (4, 5) = -0.6054282188415527e-2, (4, 6) = -0.4770040512084961e-1, (4, 7) = .77858567237854}, datatype = float[8], order = C_order), Array(1..6, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = 1.0, (2, 1) = .25, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = 1.0, (3, 1) = .1875, (3, 2) = .5625, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (3, 6) = 2.0, (4, 1) = .23583984375, (4, 2) = -.87890625, (4, 3) = .890625, (4, 4) = .0, (4, 5) = .0, (4, 6) = .2681884765625, (5, 1) = .1272735595703125, (5, 2) = -.5009765625, (5, 3) = .44921875, (5, 4) = -0.128936767578125e-1, (5, 5) = .0, (5, 6) = 0.626220703125e-1, (6, 1) = -0.927734375e-1, (6, 2) = .626220703125, (6, 3) = -.4326171875, (6, 4) = .1418304443359375, (6, 5) = -0.861053466796875e-1, (6, 6) = .3131103515625}, datatype = float[8], order = C_order), Array(1..6, {(1) = .0, (2) = .386, (3) = .21, (4) = .63, (5) = 1.0, (6) = 1.0}, datatype = float[8], order = C_order), Array(1..6, {(1) = .25, (2) = -.1043, (3) = .1035, (4) = -0.362e-1, (5) = .0, (6) = .0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 1.544, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = .9466785280815533, (3, 2) = .25570116989825814, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = 3.3148251870684886, (4, 2) = 2.896124015972123, (4, 3) = .9986419139977808, (4, 4) = .0, (4, 5) = .0, (5, 1) = 1.2212245092262748, (5, 2) = 6.019134481287752, (5, 3) = 12.537083329320874, (5, 4) = -.687886036105895, (5, 5) = .0, (6, 1) = 1.2212245092262748, (6, 2) = 6.019134481287752, (6, 3) = 12.537083329320874, (6, 4) = -.687886036105895, (6, 5) = 1.0}, datatype = float[8], order = C_order), Array(1..6, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = -5.6688, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (3, 1) = -2.4300933568337584, (3, 2) = -.20635991570891224, (3, 3) = .0, (3, 4) = .0, (3, 5) = .0, (4, 1) = -.10735290581452621, (4, 2) = -9.594562251021896, (4, 3) = -20.470286148096154, (4, 4) = .0, (4, 5) = .0, (5, 1) = 7.496443313968615, (5, 2) = -10.246804314641219, (5, 3) = -33.99990352819906, (5, 4) = 11.708908932061595, (5, 5) = .0, (6, 1) = 8.083246795922411, (6, 2) = -7.981132988062785, (6, 3) = -31.52159432874373, (6, 4) = 16.319305431231363, (6, 5) = -6.0588182388340535}, datatype = float[8], order = C_order), Array(1..3, 1..5, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (2, 1) = 10.126235083446911, (2, 2) = -7.487995877607633, (2, 3) = -34.800918615557414, (2, 4) = -7.9927717075687275, (2, 5) = 1.0251377232956207, (3, 1) = -.6762803392806898, (3, 2) = 6.087714651678606, (3, 3) = 16.43084320892463, (3, 4) = 24.767225114183653, (3, 5) = -6.5943891257167815}, datatype = float[8], order = C_order)]), ( 9 ) = ([Array(1..2, {(1) = .1, (2) = .1}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..2, {(1, 1) = .0, (1, 2) = .0, (2, 1) = .0, (2, 2) = .0}, datatype = float[8], order = C_order), Array(1..2, 1..6, {(1, 1) = .0, (1, 2) = .0, (1, 3) = .0, (1, 4) = .0, (1, 5) = .0, (1, 6) = .0, (2, 1) = .0, (2, 2) = .0, (2, 3) = .0, (2, 4) = .0, (2, 5) = .0, (2, 6) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8]), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..4, {(1) = .0, (2) = .0, (3) = .0, (4) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = 0, (2) = 0}, datatype = integer[8])]), ( 8 ) = ([Array(1..2, {(1) = 1.0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = .0}, datatype = float[8], order = C_order), Array(1..2, {(1) = .0, (2) = -.3333333333333333}, datatype = float[8], order = C_order), 0, 0]), ( 11 ) = (Array(1..6, 0..2, {(1, 1) = .0, (1, 2) = .0, (2, 0) = .0, (2, 1) = .0, (2, 2) = .0, (3, 0) = .0, (3, 1) = .0, (3, 2) = .0, (4, 0) = .0, (4, 1) = .0, (4, 2) = .0, (5, 0) = .0, (5, 1) = .0, (5, 2) = .0, (6, 0) = .0, (6, 1) = .0, (6, 2) = .0}, datatype = float[8], order = C_order)), ( 10 ) = ([proc (N, xi, Y, YP) option `[Y[1] = theta__0(xi), Y[2] = diff(theta__0(xi),xi)]`; if xi = 0 then if abs(Y[2]) <= 0. then YP[1] := 0; YP[2] := -(1/3)*Y[1] else error "system with provided initial conditions is singular" end if else YP[1] := Y[2]; YP[2] := -Y[1]-2*Y[2]/xi end if; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 13 ) = (), ( 12 ) = (), ( 15 ) = ("rkf45"), ( 14 ) = ([0, 0]), ( 18 ) = ([]), ( 19 ) = (0), ( 16 ) = ([0, 0, 0, 0, 0, []]), ( 17 ) = ([proc (N, xi, Y, YP) option `[Y[1] = theta__0(xi), Y[2] = diff(theta__0(xi),xi)]`; if xi = 0 then if abs(Y[2]) <= 0. then YP[1] := 0; YP[2] := -(1/3)*Y[1] else error "system with provided initial conditions is singular" end if else YP[1] := Y[2]; YP[2] := -Y[1]-2*Y[2]/xi end if; 0 end proc, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]), ( 22 ) = (0), ( 23 ) = (0), ( 20 ) = ([]), ( 21 ) = (0), ( 27 ) = (""), ( 26 ) = (Array(1..0, {})), ( 25 ) = (Array(1..0, {})), ( 24 ) = (0), ( 28 ) = (0)  ] ))  ] ); _y0 := Array(0..2, {(1) = 0., (2) = 1.}); _vmap := array( 1 .. 2, [( 1 ) = (1), ( 2 ) = (2)  ] ); _x0 := _dtbl[1][5][5]; _n := _dtbl[1][4][1]; _ne := _dtbl[1][4][3]; _nd := _dtbl[1][4][4]; _nv := _dtbl[1][4][16]; if not type(_xout, 'numeric') then if member(_xout, ["start", "left", "right"]) then if _Env_smart_dsolve_numeric = true or _dtbl[1][4][10] = 1 then if _xout = "left" then if type(_dtbl[2], 'table') then return _dtbl[2][5][1] end if elif _xout = "right" then if type(_dtbl[3], 'table') then return _dtbl[3][5][1] end if end if end if; return _dtbl[1][5][5] elif _xout = "method" then return _dtbl[1][15] elif _xout = "storage" then return evalb(_dtbl[1][4][10] = 1) elif _xout = "leftdata" then if not type(_dtbl[2], 'array') then return NULL else return eval(_dtbl[2]) end if elif _xout = "rightdata" then if not type(_dtbl[3], 'array') then return NULL else return eval(_dtbl[3]) end if elif _xout = "enginedata" then return eval(_dtbl[1]) elif _xout = "enginereset" then _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); return NULL elif _xout = "initial" then return procname(_y0[0]) elif _xout = "laxtol" then return _dtbl[`if`(member(_dtbl[4], {2, 3}), _dtbl[4], 1)][5][18] elif _xout = "numfun" then return `if`(member(_dtbl[4], {2, 3}), _dtbl[_dtbl[4]][4][18], 0) elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return procname(_y0[0]), [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] elif _xout = "last" then if _dtbl[4] <> 2 and _dtbl[4] <> 3 or _x0-_dtbl[_dtbl[4]][5][1] = 0. then error "no information is available on last computed point" else _xout := _dtbl[_dtbl[4]][5][1] end if elif _xout = "function" then if _dtbl[1][4][33]-2. = 0 then return eval(_dtbl[1][10], 1) else return eval(_dtbl[1][10][1], 1) end if elif _xout = "map" then return copy(_vmap) elif type(_xin, `=`) and type(rhs(_xin), 'list') and member(lhs(_xin), {"initial", "parameters", "initial_and_parameters"}) then if true then error "initial conditions cannot be changed for systems with removable singularities" end if; _ini, _par := [], []; if lhs(_xin) = "initial" then _ini := rhs(_xin) elif lhs(_xin) = "parameters" then _par := rhs(_xin) elif select(type, rhs(_xin), `=`) <> [] then _par, _ini := selectremove(type, rhs(_xin), `=`) elif nops(rhs(_xin)) < nops(_pars)+1 then error "insufficient data for specification of initial and parameters" else _par := rhs(_xin)[-nops(_pars) .. -1]; _ini := rhs(_xin)[1 .. -nops(_pars)-1] end if; _xout := lhs(_xout); _i := false; if _par <> [] then _i := `dsolve/numeric/process_parameters`(_n, _pars, _par, _y0) end if; if _ini <> [] then _i := `dsolve/numeric/process_initial`(_n-_ne, _ini, _y0, _pars, _vmap) or _i end if; if _i then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars); if _Env_smart_dsolve_numeric = true and type(_y0[0], 'numeric') and _dtbl[1][4][10] <> 1 then procname("right") := _y0[0]; procname("left") := _y0[0] end if end if; if _xout = "initial" then return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)] elif _xout = "parameters" then return [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] else return [_y0[0], seq(_y0[_vmap[_i]], _i = 1 .. _n-_ne)], [seq(_y0[_n+_i], _i = 1 .. nops(_pars))] end if elif _xin = "eventstop" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then return 0 end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 <= _dtbl[5-_i][4][9] then _i := 5-_i; _dtbl[4] := _i; _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) elif 100 <= _dtbl[_i][4][9] then _j := round(_dtbl[_i][4][17]); return round(_dtbl[_i][3][1][_j, 1]) else return 0 end if elif _xin = "eventstatus" then if _nv = 0 then error "this solution has no events" end if; _i := [selectremove(proc (a) options operator, arrow; _dtbl[1][3][1][a, 7] = 1 end proc, {seq(_j, _j = 1 .. round(_dtbl[1][3][1][_nv+1, 1]))})]; return ':-enabled' = _i[1], ':-disabled' = _i[2] elif _xin = "eventclear" then if _nv = 0 then error "this solution has no events" end if; _i := _dtbl[4]; if _i <> 2 and _i <> 3 then error "no events to clear" end if; if _dtbl[_i][4][10] = 1 and assigned(_dtbl[5-_i]) and _dtbl[_i][4][9] < 100 and 100 < _dtbl[5-_i][4][9] then _dtbl[4] := 5-_i; _i := 5-_i end if; if _dtbl[_i][4][9] < 100 then error "no events to clear" elif _nv < _dtbl[_i][4][9]-100 then error "event error condition cannot be cleared" else _j := _dtbl[_i][4][9]-100; if irem(round(_dtbl[_i][3][1][_j, 4]), 2) = 1 then error "retriggerable events cannot be cleared" end if; _j := round(_dtbl[_i][3][1][_j, 1]); for _k to _nv do if _dtbl[_i][3][1][_k, 1] = _j then if _dtbl[_i][3][1][_k, 2] = 3 then error "range events cannot be cleared" end if; _dtbl[_i][3][1][_k, 8] := _dtbl[_i][3][1][_nv+1, 8] end if end do; _dtbl[_i][4][17] := 0; _dtbl[_i][4][9] := 0; if _dtbl[1][4][10] = 1 then if _i = 2 then try procname(procname("left")) catch:  end try else try procname(procname("right")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and member(lhs(_xin), {"eventdisable", "eventenable"}) then if _nv = 0 then error "this solution has no events" end if; if type(rhs(_xin), {('list')('posint'), ('set')('posint')}) then _i := {op(rhs(_xin))} elif type(rhs(_xin), 'posint') then _i := {rhs(_xin)} else error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; if select(proc (a) options operator, arrow; _nv < a end proc, _i) <> {} then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _k := {}; for _j to _nv do if member(round(_dtbl[1][3][1][_j, 1]), _i) then _k := `union`(_k, {_j}) end if end do; _i := _k; if lhs(_xin) = "eventdisable" then _dtbl[4] := 0; _j := [evalb(assigned(_dtbl[2]) and member(_dtbl[2][4][17], _i)), evalb(assigned(_dtbl[3]) and member(_dtbl[3][4][17], _i))]; for _k in _i do _dtbl[1][3][1][_k, 7] := 0; if assigned(_dtbl[2]) then _dtbl[2][3][1][_k, 7] := 0 end if; if assigned(_dtbl[3]) then _dtbl[3][3][1][_k, 7] := 0 end if end do; if _j[1] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[2][3][4][_k, 1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to defined init `, _dtbl[2][3][4][_k, 1]); _dtbl[2][3][1][_k, 8] := _dtbl[2][3][4][_k, 1] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to rate hysteresis init `, _dtbl[2][5][24]); _dtbl[2][3][1][_k, 8] := _dtbl[2][5][24] elif _dtbl[2][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[2][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to initial init `, _x0); _dtbl[2][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #2, event code `, _k, ` to fireinitial init `, _x0-1); _dtbl[2][3][1][_k, 8] := _x0-1 end if end do; _dtbl[2][4][17] := 0; _dtbl[2][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("left")) end if end if; if _j[2] then for _k to _nv+1 do if _k <= _nv and not type(_dtbl[3][3][4][_k, 2], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to defined init `, _dtbl[3][3][4][_k, 2]); _dtbl[3][3][1][_k, 8] := _dtbl[3][3][4][_k, 2] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to rate hysteresis init `, _dtbl[3][5][24]); _dtbl[3][3][1][_k, 8] := _dtbl[3][5][24] elif _dtbl[3][3][1][_k, 2] = 0 and irem(iquo(round(_dtbl[3][3][1][_k, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to initial init `, _x0); _dtbl[3][3][1][_k, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #3, event code `, _k, ` to fireinitial init `, _x0+1); _dtbl[3][3][1][_k, 8] := _x0+1 end if end do; _dtbl[3][4][17] := 0; _dtbl[3][4][9] := 0; if _dtbl[1][4][10] = 1 then procname(procname("right")) end if end if else for _k in _i do _dtbl[1][3][1][_k, 7] := 1 end do; _dtbl[2] := evaln(_dtbl[2]); _dtbl[3] := evaln(_dtbl[3]); _dtbl[4] := 0; if _dtbl[1][4][10] = 1 then if _x0 <= procname("right") then try procname(procname("right")) catch:  end try end if; if procname("left") <= _x0 then try procname(procname("left")) catch:  end try end if end if end if; return  elif type(_xin, `=`) and lhs(_xin) = "eventfired" then if not type(rhs(_xin), 'list') then error "'eventfired' must be specified as a list" end if; if _nv = 0 then error "this solution has no events" end if; if _dtbl[4] <> 2 and _dtbl[4] <> 3 then error "'direction' must be set prior to calling/setting 'eventfired'" end if; _i := _dtbl[4]; _val := NULL; if not assigned(_EnvEventRetriggerWarned) then _EnvEventRetriggerWarned := false end if; for _k in rhs(_xin) do if type(_k, 'integer') then _src := _k elif type(_k, 'integer' = 'anything') and type(evalf(rhs(_k)), 'numeric') then _k := lhs(_k) = evalf[max(Digits, 18)](rhs(_k)); _src := lhs(_k) else error "'eventfired' entry is not valid: %1", _k end if; if _src < 1 or round(_dtbl[1][3][1][_nv+1, 1]) < _src then error "event identifiers must be integers in the range 1..%1", round(_dtbl[1][3][1][_nv+1, 1]) end if; _src := {seq(`if`(_dtbl[1][3][1][_j, 1]-_src = 0., _j, NULL), _j = 1 .. _nv)}; if nops(_src) <> 1 then error "'eventfired' can only be set/queried for root-finding events and time/interval events" end if; _src := _src[1]; if _dtbl[1][3][1][_src, 2] <> 0. and _dtbl[1][3][1][_src, 2]-2. <> 0. then error "'eventfired' can only be set/queried for root-finding events and time/interval events" elif irem(round(_dtbl[1][3][1][_src, 4]), 2) = 1 then if _EnvEventRetriggerWarned = false then WARNING(`'eventfired' has no effect on events that retrigger`) end if; _EnvEventRetriggerWarned := true end if; if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then _val := _val, undefined elif type(_dtbl[_i][3][4][_src, _i-1], 'undefined') or _i = 2 and _dtbl[2][3][1][_src, 8] < _dtbl[2][3][4][_src, 1] or _i = 3 and _dtbl[3][3][4][_src, 2] < _dtbl[3][3][1][_src, 8] then _val := _val, _dtbl[_i][3][1][_src, 8] else _val := _val, _dtbl[_i][3][4][_src, _i-1] end if; if type(_k, `=`) then if _dtbl[_i][3][1][_src, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_src, 4]), 32), 2) = 1 then error "cannot set event code for a rate hysteresis event" end if; userinfo(3, {'events', 'eventreset'}, `manual set event code `, _src, ` to value `, rhs(_k)); _dtbl[_i][3][1][_src, 8] := rhs(_k); _dtbl[_i][3][4][_src, _i-1] := rhs(_k) end if end do; return [_val] elif type(_xin, `=`) and lhs(_xin) = "direction" then if not member(rhs(_xin), {-1, 1, ':-left', ':-right'}) then error "'direction' must be specified as either '1' or 'right' (positive) or '-1' or 'left' (negative)" end if; _src := `if`(_dtbl[4] = 2, -1, `if`(_dtbl[4] = 3, 1, undefined)); _i := `if`(member(rhs(_xin), {1, ':-right'}), 3, 2); _dtbl[4] := _i; _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #4, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if; return _src elif _xin = "eventcount" then if _dtbl[1][3][1] = 0 or _dtbl[4] <> 2 and _dtbl[4] <> 3 then return 0 else return round(_dtbl[_dtbl[4]][3][1][_nv+1, 12]) end if elif type(_xin, `=`) and lhs(_xin) = "setdatacallback" then if not type(rhs(_xin), 'nonegint') then error "data callback must be a nonnegative integer (address)" end if; _dtbl[1][28] := rhs(_xin) else return "procname" end if end if; if _xout = _x0 then return [_x0, seq(evalf(_dtbl[1][6][_vmap[_i]]), _i = 1 .. _n-_ne)] end if; _i := `if`(_x0 <= _xout, 3, 2); if _xin = "last" and 0 < _dtbl[_i][4][9] and _dtbl[_i][4][9] < 100 then _dat := eval(_dtbl[_i], 2); _j := _dat[4][20]; return [_dat[11][_j, 0], seq(_dat[11][_j, _vmap[_i]], _i = 1 .. _n-_ne-_nd), seq(_dat[8][1][_vmap[_i]], _i = _n-_ne-_nd+1 .. _n-_ne)] end if; if not type(_dtbl[_i], 'array') then _dtbl[_i] := `dsolve/numeric/SC/IVPdcopy`(_dtbl[1], `if`(assigned(_dtbl[_i]), _dtbl[_i], NULL)); if 0 < _nv then for _j to _nv+1 do if _j <= _nv and not type(_dtbl[_i][3][4][_j, _i-1], 'undefined') then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to defined init `, _dtbl[_i][3][4][_j, _i-1]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][3][4][_j, _i-1] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 32), 2) = 1 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to rate hysteresis init `, _dtbl[_i][5][24]); _dtbl[_i][3][1][_j, 8] := _dtbl[_i][5][24] elif _dtbl[_i][3][1][_j, 2] = 0 and irem(iquo(round(_dtbl[_i][3][1][_j, 4]), 2), 2) = 0 then userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to initial init `, _x0); _dtbl[_i][3][1][_j, 8] := _x0 else userinfo(3, {'events', 'eventreset'}, `reinit #5, event code `, _j, ` to fireinitial init `, _x0-2*_i+5.0); _dtbl[_i][3][1][_j, 8] := _x0-2*_i+5.0 end if end do end if end if; if _xin <> "last" then if 0 < 0 then if `dsolve/numeric/checkglobals`(op(_dtbl[1][14]), _pars, _n, _y0) then `dsolve/numeric/SC/reinitialize`(_dtbl, _y0, _n, procname, _pars, _i) end if end if; if _dtbl[1][4][7] = 0 then error "parameters must be initialized before solution can be computed" end if end if; _dat := eval(_dtbl[_i], 2); _dtbl[4] := _i; try _src := `dsolve/numeric/SC/IVPrun`(_dat, _xout) catch: userinfo(2, `dsolve/debug`, print(`Exception in solnproc:`, [lastexception][2 .. -1])); error  end try; if _dat[17] <> _dtbl[1][17] then _dtbl[1][17] := _dat[17]; _dtbl[1][10] := _dat[10] end if; if _src = 0 and 100 < _dat[4][9] then _val := _dat[3][1][_nv+1, 8] else _val := _dat[11][_dat[4][20], 0] end if; if _src <> 0 or _dat[4][9] <= 0 then _dtbl[1][5][1] := _xout else _dtbl[1][5][1] := _val end if; if _i = 3 and _val < _xout then Rounding := -infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further right of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further right of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further right of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further right of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further right of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further right of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further right of %1", evalf[8](_val) end if elif _i = 2 and _xout < _val then Rounding := infinity; if _dat[4][9] = 1 then error "cannot evaluate the solution further left of %1, probably a singularity", evalf[8](_val) elif _dat[4][9] = 2 then error "cannot evaluate the solution further left of %1, maxfun limit exceeded (see <a href='http://www.maplesoft.com/support/help/search.aspx?term=dsolve,maxfun' target='_new'>?dsolve,maxfun</a> for details)", evalf[8](_val) elif _dat[4][9] = 3 then if _dat[4][25] = 3 then error "cannot evaluate the solution past the initial point, problem may be initially singular or improperly set up" else error "cannot evaluate the solution past the initial point, problem may be complex, initially singular or improperly set up" end if elif _dat[4][9] = 4 then error "cannot evaluate the solution further left of %1, accuracy goal cannot be achieved with specified 'minstep'", evalf[8](_val) elif _dat[4][9] = 5 then error "cannot evaluate the solution further left of %1, too many step failures, tolerances may be too loose for problem", evalf[8](_val) elif _dat[4][9] = 6 then error "cannot evaluate the solution further left of %1, cannot downgrade delay storage for problems with delay derivative order > 1, try increasing delaypts", evalf[8](_val) elif _dat[4][9] = 10 then error "cannot evaluate the solution further right of %1, interrupt requested", evalf[8](_val) elif 100 < _dat[4][9] then if _dat[4][9]-100 = _nv+1 then error "constraint projection failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+2 then error "index-1 and derivative evaluation failure on event at t=%1", evalf[8](_val) elif _dat[4][9]-100 = _nv+3 then error "maximum number of event iterations reached (%1) at t=%2", round(_dat[3][1][_nv+1, 3]), evalf[8](_val) else if _Env_dsolve_nowarnstop <> true then `dsolve/numeric/warning`(StringTools:-FormatMessage("cannot evaluate the solution further left of %1, event #%2 triggered a halt", evalf[8](_val), round(_dat[3][1][_dat[4][9]-100, 1]))) end if; Rounding := 'nearest'; _xout := _val end if else error "cannot evaluate the solution further left of %1", evalf[8](_val) end if end if; if _EnvInFsolve = true then _dig := _dat[4][26]; if type(_EnvDSNumericSaveDigits, 'posint') then _dat[4][26] := _EnvDSNumericSaveDigits else _dat[4][26] := Digits end if; _Env_dsolve_SC_native := true; if _dat[4][25] = 1 then _i := 1; _dat[4][25] := 2 else _i := _dat[4][25] end if; _val := `dsolve/numeric/SC/IVPval`(_dat, _xout, _src); _dat[4][25] := _i; _dat[4][26] := _dig; [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] else Digits := _dat[4][26]; _val := `dsolve/numeric/SC/IVPval`(eval(_dat, 2), _xout, _src); [_xout, seq(_val[_vmap[_i]], _i = 1 .. _n-_ne)] end if end proc, (2) = Array(0..0, {}), (3) = [xi, theta__0(xi), diff(theta__0(xi), xi)], (4) = []}); _vars := _dat[3]; _pars := map(rhs, _dat[4]); _n := nops(_vars)-1; _solnproc := _dat[1]; if not type(_xout, 'numeric') then if member(x_rkf45, ["start", 'start', "method", 'method', "left", 'left', "right", 'right', "leftdata", "rightdata", "enginedata", "eventstop", 'eventstop', "eventclear", 'eventclear', "eventstatus", 'eventstatus', "eventcount", 'eventcount', "laxtol", 'laxtol', "numfun", 'numfun', NULL]) then _res := _solnproc(convert(x_rkf45, 'string')); if 1 < nops([_res]) then return _res elif type(_res, 'array') then return eval(_res, 1) elif _res <> "procname" then return _res end if elif member(x_rkf45, ["last", 'last', "initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(x_rkf45, 'string'); _res := _solnproc(_xout); if _xout = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] elif _xout = "initial_and_parameters" then return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] end if elif type(_xout, `=`) and member(lhs(_xout), ["initial", 'initial', "parameters", 'parameters', "initial_and_parameters", 'initial_and_parameters', NULL]) then _xout := convert(lhs(x_rkf45), 'string') = rhs(x_rkf45); if type(rhs(_xout), 'list') then _res := _solnproc(_xout) else error "initial and/or parameter values must be specified in a list" end if; if lhs(_xout) = "initial" then return [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] elif lhs(_xout) = "parameters" then return [seq(_pars[_i] = _res[_i], _i = 1 .. nops(_pars))] else return [seq(_vars[_i+1] = [_res][1][_i+1], _i = 0 .. _n), seq(_pars[_i] = [_res][2][_i], _i = 1 .. nops(_pars))] end if elif type(_xout, `=`) and member(lhs(_xout), ["eventdisable", 'eventdisable', "eventenable", 'eventenable', "eventfired", 'eventfired', "direction", 'direction', NULL]) then return _solnproc(convert(lhs(x_rkf45), 'string') = rhs(x_rkf45)) elif _xout = "solnprocedure" then return eval(_solnproc) elif _xout = "sysvars" then return _vars end if; if procname <> unknown then return ('procname')(x_rkf45) else _ndsol := 1; _ndsol := _ndsol; _ndsol := pointto(_dat[2][0]); return ('_ndsol')(x_rkf45) end if end if; try _res := _solnproc(_xout); [seq(_vars[_i+1] = _res[_i+1], _i = 0 .. _n)] catch: error  end try end proc

(11)

NULL

Download n=1_analytical.mw

ode1 is Lane emden equation that can be solved analytically for n=0,1,5 .

For other values of n it needs to be solved numerically.

My question is how to proceed and use the numeric result in ode2 with bcs mentioned and get same or close result to analytical one. I am trying to verify alpha. In the worksheet i have chosen n=1 because i want to learn how to deal with numeric solution for which i already have the answer to verify. If ode2 also needs to to solved numeric its ok. The point is to get at the derivative value from various alpha values for different n like 3. Please help and let me know if additional info is needed.

This setup works, where B extends A, then B method access local variable in A directly, since it now becomes part of the object B itself

restart;
                            
module A()
  option object;
  local s::string:="";
end module;

module B()
   option object(A);
   export foo::static:=proc(_self,$)
      _self:-s := cat(_self:-s,"something");
      print(_self:-s);
   end proc:
end module;

o:=Object(B);
o:-foo()

Gives "something"

Now, I changed B, by adding an anonymous local proc() and did the same exact thing as above, which is to access s.

Now Maple complains that B does not export s

restart;

module A()
  option object;
  local s::string:="";
end module;

module B()
   option object(A);
   export foo::static:=proc(_self,$)
        proc()
            _self:-s:=cat(_self:-s,"somethig");
            print(_self:-s);
        end proc();
   end proc:
end module;

o:=Object(B);
o:-foo()

It gives

Error, (in anonymous procedure called from anonymous procedure) module `B` does not export `s`

Could someone help me understand why this happens? How it works in the first example but not in the second?  I do not see why it would make difference. isn't anonymous procedure part of the class that is being extended?

Update

It is worst than I thought. Even named local proc, inside method now fail. Here is an example

restart;

module A()
  option object;
  local s::string:="";
end module;

module B()
   option object(A);
   export foo::static:=proc(_self,$)
        local z::string:="something";
        local my_inner_proc:=proc()
            _self:-s:=cat(_self:-s,z);
        end proc();
        my_inner_proc();
   end proc:
end module;

o:=Object(B);
o:-foo()

Gives 

Error, (in anonymous procedure called from anonymous procedure) module `B` does not export `s`
I was using code which worked before, but now after extending the class, I am finding all these problems.

Is this documented something that local proc()'s inside method do not work as expected when extending classes in Maple OOP? It means now I have to move these local proc() to the outside of its current enclosing proc() to make Maple happy.  I just do not understand why this limitation.

Maple 2023.1 on Windows 10

integral of sqrt(sin(x)) is known to be as given in few place such as in here and other places.

Maple gives a result which is much more complicated (but also in terms of EllipticE special function). 

Could someone find a way to simplify it to the above answer and also to the same answer given by Mathematica?

int(sqrt(sin(x)),x)

Compare to 

Maple's result seems to be correct, as I plotted it and compared the smaller known resut. But I was not able to simplify it to obtain the smaller antiderivative.

Any tricks to do that?

Maple 2023.1 will not let me overload a method for an object when using _self.  Is there a way around this?

module person()
   option object;
   local the_name::string:="*",the_age;

   export set_info::static:= overload(
   [
      proc(_self,the_name::string,$) option overload;
          _self:-the_name:=the_name;
      end proc,

      proc(_self,the_name::string,the_age::integer, $) option overload;
          _self:-the_name:=the_name;
          _self:-the_age:=the_age;
      end proc
   ]);

   export get_name::static:=proc(_self,$)
      RETURN(_self:-the_name);
   end proc;
end module;

And now when I do 

o:=Object(person);
o:-set_info("me");
o:-set_info("me",20)

Error, (in person:-set_info) `me` does not evaluate to a module
Error, invalid input: no implementation of person:-set_info 
matches the arguments in call, 'person:-set_info("me",20)'

The problem goes away by removing `_self` as first argument in signature of the overloaded method. But then I will not be able to use _self any more inside the methods.

There is no problem overloading the method when using normal module, or one that does not use _self. For example this works

restart;

module person() 
   export set_info:= overload(
   [
      proc(the_name::string,$) option overload;
          print(the_name);
      end proc,

      proc(the_name::string,the_age::integer, $) option overload;
          print(the_name);
          print(the_age);
      end proc
   ]);
end module;

person:-set_info("me");
person:-set_info("me",20)

How to make the first example above work? I need to overload a method inside an module with option object that uses _self

update

I found a workaround. But it is not good, but for now. For the overloaded method, instead of using 
           o:-set_info("me");

This works instead

         set_info(o,"me");

So the following now works

o:=Object(person);

#o:-set_info("me");   #do not use with overloaded
#o:-set_info("me",20); #do not use with overloaded

set_info(o,"me");  #now works OK with no error
set_info(o,"me",20); #now works OK with no error

o:-get_name();  #OK since this method  is not overloaded
o:-get_age();  #OK since this method  is not overloaded

I do not understand why _self can't be used with overloaded methods and if this a bug or by design. 

Maple 2023.1 on windows 10

67588

interface(version);

`Standard Worksheet Interface, Maple 2023.1, Windows 10, July 7 2023 Build ID 1723669`

restart;

67588

module person()
   option object;
   local the_name::string:="*",the_age;

   export set_info::static:= overload(
   [
      proc(_self,the_name::string,$) option overload;
           #print("Inside first overloaded set_info");
          _self:-the_name:=the_name;
      end proc,

      proc(_self,the_name::string,the_age::integer, $) option overload;
          #print("Inside second overloaded set_info");
          _self:-the_name:=the_name;
          _self:-the_age:=the_age;
      end proc
   ]);

   export get_name::static:=proc(_self,$)
      RETURN(_self:-the_name);
   end proc;

   export get_age::static:=proc(_self,$)
      RETURN(_self:-the_age);
   end proc;
end module;

module person () local the_name::string, the_age; option object; end module

o:=Object(person);
#o:-set_info("me");
#o:-set_info("me",20);

set_info(o,"me"):
set_info(o,"me",20):

o:-get_name();
o:-get_age();

module person () local the_name::string, the_age; option object; end module

"me"

20

 

Download self_with_overloaded.mw

In short, I'd like to obtain n largest/smallest elements in a huge list of (probably non-numeric) data. Of cource I can sort it and then extract the desired part, yet isn't there a dedicated procedure that do a partial sort of the input data in Maple?

Edit. In a MatLab weblog, the blogger gave: 

So I believe that a dedicated one is not useless. But what is the Maple equivalent to MatLab's maxk, mink, and topkrows?

Hi all

I need your advice on Maple usage after a long break. I installed Maple on my laptop and first of all tried to launch my old program. Surprisingly, the old file opened. While the core Maple functionality remained familiar, the user interface had undergone some changes.

Yet, I soon encountered challenges when attempting to perform even the simplest operations, like file browsing or text selection; the Maple Standard GUI seemed uncharacteristically sluggish.  I switched to Maple Input mode but it didn't help much. Are there ways to improve my experience with Maple? Is it caused by the outdated hardware?

My system:
Ubuntu 22.04.3 LTS
Dell Inc. Latitude 5510 (1TB SSD, 32GB RAM).

Maybe it works much better on Windows?

Thank you for any suggestions.

I have a small problem that I can't find a solution for. How do you draw a diagram like the one shown in Maple? I can't figure out how to rotate the column labels or define tickmarks as text.

Can anyone help?

Hi, 

Some of my maple documents contain data tables. 

When I want to view these documents with the maple cloud viewer, the data tables are invisible (the table is completely grayed out) and it is therefore impossible to change the values in this table. 

The table properties are such that it is enabled, visible and editable. 
Does anyone have an idea how to solve this problem? 
Thanks in advance. 

Can anyone please assist with these errors?

#Clear memory.
restart;

#Initialise variables and arrays.
h:=Pi/10;
n:=10;
k:=0.1;  
m:=6;
t:=Array(0..m):
x:=Array(0..n):
u:=Array(0..n,0..m):

#Initialise the x array and the initial u(x,0) boundary.
for i from 0 to n do
    x[i]:=i*h;
    u[i,0]:=0;
end do:

#Initialise the t array and the u(x,t) side boundaries.
for j from 0 to m do
   t[j]:=j*k;
   u[0,j]:=0;
   u[n,j]:=3*sin*t[j];
end do:

#Use the 2D CTCS explicit wave method.
for i from 1 to n-1 do
   u[i,1]:=(u[i-1,0]/2*Pi^2+sin(x)/10*Pi^2+u[i+1,0]/2*Pi^2)-1;
end do:
 
for j from 1 to m-1 do
  for i from 1 to n-1 do
   u[i,j+1]:=(((u[i-1,j]+u[i+1,j]-u[i,j-1])/Pi^2)-2);
  end do;
end do:

#Display the u(x,t)values.
printf("2D CTCS Explicit Wave Method\n");
printf("----------------------------\n");
printf("x\t\t t\t\t u\n");
for i from 0 to n do
   printf("% f\t% f\t% f\n",x[i],t[m],u[i,m]);
end do;

(1/10)*Pi

 

10

 

.1

 

6

 

Error, invalid input: sin expects its 1st argument, x, to be of type algebraic, but received Array(0..10, [0,1/10*Pi,1/5*Pi,3/10*Pi,2/5*Pi,1/2*Pi,3/5*Pi,7/10*Pi,4/5*Pi,9/10*Pi,Pi])

 

2D CTCS Explicit Wave Method
----------------------------
x                 t                 u
 0.000000         0.600000         0.000000
 0.314159         0.600000        -2.015556
 0.628319         0.600000        -2.198509
 0.942478         0.600000        -2.215724
 1.256637         0.600000        -2.218015
 1.570796         0.600000        

 

Error, (in fprintf) number expected for floating point format

 

NULL


Download Asst_4_Question_2c.mw

Both, Maple and MapleSim in Versions from 2021 to 2023 do not start. A logfile is saved which starts as

# A fatal error has been detected by the Java Runtime Environment:

#

#  EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x0000000000000000, pid=17256, tid=10520

#

# JRE version: OpenJDK Runtime Environment Temurin-19.0.1+10 (19.0.1+10) (build 19.0.1+10)

# Java VM: OpenJDK 64-Bit Server VM Temurin-19.0.1+10 (19.0.1+10, mixed mode, tiered, compressed oops, compressed class ptrs, g1 gc, windows-amd64)

# Problematic frame:

# C  0x0000000000000000

#

This only occurs when the notebook (on which the error occurs) is connected to the domain network. If the notebook is not connected, Maple and MapleSim can be started and will continue to run when the network is reconnected.

Has anybody seen this before or any ideas what this could be?

Edit: This all happened under Windows 10 on a notebook that has been running Maple for 3 years and only recently displayed this error.

Edit2: Connection via an USB doc which also connects to an external monitor.

Since I have updated from Maple 2021 to 2023 something is wrong with my stylesheets.

I rephrase my qeustion here:

I like to change the text-style of 2D-Input to courant 12, bold, color x, no italic.

Now it is courant 12, black, italic when opening a new worksheet.

I was going to format, style, 2D-input, modify and then the font has changed when opening a new woksheet but the color is going back to black and its also italic courant when pressing enter in that worksheet.

I When opening a new worksheet, i don't want ot looad an new style set by hand every time.

 

Thanks for support

 

 

Good day to all the members who read this question.
I ask for your help to find the right way to solve this two differential equations (is attached the file). Used the common code "dsolve" but is not working on this problem. Doesn't matter if the solution is numeric or algebraic.
I will thaks a lot your kind help.
Best regards to all of you

DIFFERENTIAL_EQUATION.mw

restart

with(PDEtools)

First Part

The differential equation to solve:

(Delta*LinearAlgebra:-Transpose(D[1/2])*D__0-I*`&mu;__e`*D__0/(lambda+I*`&mu;__e`*r)-2*(`&mu;__e`^2*r^2+lambda^2))*R(r)

Definitions

D__n = `&PartialD;__r`+I*omega(a^2+r^2)/Delta+I*a*m/Delta+2*n*(r-M)/Delta

LinearAlgebra:-Transpose(D[n]) = `&PartialD;__r`-I*omega(a^2+r^2)/Delta-I*a*m/Delta+2*n*(r-M)/Delta

a := 1; M := 1; omega := 1; m := 1; `&mu;__e` := 1; lambda := 1

Delta := -2*M*r+a^2+r^2

I divided the differential equation in 3 parts (A, B, C).

A := (-I*omega(a^2+r^2)-I*a*m+r-M)*(diff(R(r), r)+I*omega(a^2+r^2)*R(r)/Delta+I*a*m*R(r)/Delta)+Delta*(diff(R(r), r, r))+I*omega(a^2+r^2)*(diff(R(r), r))+I*a*m*(diff(R(r), r))

B := -I*`&mu;__e`*(diff(R(r), r)+I*omega(a^2+r^2)*R(r)/Delta+I*a*m*R(r)/Delta)/(lambda+I*`&mu;__e`*r)

C := -(2*(`&mu;__e`^2*r^2+lambda^2))*R(r)

DE := A+B+C

E := dsolve(DE)

R(r) = DESol({diff(diff(_Y(r), r), r)-(1-r+I/(1+I*r))*(diff(_Y(r), r))/(r^2-2*r+1)-(-(2*I)*((-1-2*I)+r)/(r^2-2*r+1)-2/((1+I*r)*(r^2-2*r+1))+2*r^2+2)*_Y(r)/(r^2-2*r+1)}, {_Y(r)})

(1)

dsolve({DE, DE(0) = 1}, numeric, range = 0 .. 20)

Error, (in dsolve/numeric/type_check) insufficient initial/boundary value information for procedure defined problem

 

Second Part

The differential equation to solve:

[`#msub(mi("L",fontweight = "bold"),mfrac(mn("1",fontweight = "bold"),mn("2",fontweight = "bold"),linethickness = "1"))`*LinearAlgebra:-Transpose(L[1/2])+a*`&mu;__e`*sin(theta)*LinearAlgebra:-Transpose(L[1/2])/(lambda+a*`&mu;__e`*cos(theta))+2*(lambda^2+a^2*`&mu;__e`*cos(theta)^2)]*S(theta) = 0

Definitions:

L__n = a*omega*`sin&theta;`+m*`cosec&theta;`+n*`cot&theta;`+`&PartialD;__&theta;`

LinearAlgebra:-Transpose(L[n]) = -a*omega*`sin&theta;`-m*`cosec&theta;`+n*`cot&theta;`+`&PartialD;__&theta;`

Also I divided the differential equation in 3 parts (A, B, C).

F := (omega*a*sin(theta)+m/sin(theta)+1/(2*tan(theta)))(diff(S(theta), theta)-omega*a*sin(theta)*S(theta)-m*S(theta)/sin(theta)+S(theta)/(2*tan(theta)))+diff(S(theta), theta, theta)-omega*a*sin(theta)*(diff(S(theta), theta))-m*(diff(S(theta), theta))/sin(theta)+(diff(S(theta), theta))/(2*tan(theta))

G := a*`&mu;__e`*sin(theta)*(diff(S(theta), theta)-omega*a*sin(theta)*S(theta)-m*S(theta)/sin(theta)+S(theta)/(2*tan(theta)))/(lambda+a*`&mu;__e`*cos(theta))

H := (2*(lambda^2+a^2*`&mu;__e`*cos(theta)^2))*S(theta)

DF := F+G+H

dsolve(DF)

dsolve({DF, DF(0) = 1}, numeric, range = 0 .. 20)

Error, (in dsolve/numeric/type_check) insufficient initial/boundary value information for procedure defined problem

 

NULL

Download DIFFERENTIAL_EQUATION.mw

Dear Power Users, I tried to make a model in Maple but after several hours of struggling I need some help. Can someone tell me what I did wrong or explain to me what is the meaning of the maplemint comment on procedure (optimalisatie)? Thank you in advance.

DiLeoCasper.mw 

For the t output I need to show 1, 1.2, 1.4....2, my attempt is highlighted in green below

Can anyone assist please?

#Clear memory and load packages.
restart;
with(plots):
with(Statistics):

#Define vectors and variables.
actual:=<2,3.5136,5.8016,9.1136,13.7376,20>:
t:=<1,1.2,1.4,1.6,1.8,2>:
n:=6:
RMSE:=0:

#Perform a simple linear regression on the data.
P:=LinearFit([1,x],t,actual,x);

#Display the model errors.
printf("t    Actual P  Model P  Error\n");
for i from 1 to n do
   model:=subs(x=t[i],P):
   err:=actual[i]-model:
   RMSE:=RMSE+err^2:
   printf("%2d %7.4f% 10.4f% 9.4f\n",(i+(1/5)),actual[i],model,err);
end do:

#Display the root mean square error.
RMSE:=sqrt(RMSE/n);

#Plot the points and the model.
p1:=plot(t,actual,style=point,view=[0..7,8..26]):
p2:=plot(P,view=[0..7,8..26]):
display(p1,p2);

-HFloat(17.540266666666668)+HFloat(17.712)*x

 

t    Actual P  Model P  Error

 

Error, (in fprintf) integer expected for integer format

 

HFloat(0.7463867411787324)

 

 

NULL

Download Asst_4_Question_1f.mw

First 9 10 11 12 13 14 15 Last Page 11 of 26