Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Essentially I have this trigonometric equation and I want to solve (get the roots of) it within the range -Pi..Pi:

v := a+b*cos(t)-c*(d*(1-(a+b*cos(t))^2-d^2*sin(t)^2)^(1/2)+e*sin(t)) = 0;
v1 := t > -Pi;
v2 := t < Pi;

Where t is the variable and a..e are constants.  At the moment I am trying the following:                  
solve({v, v1,v2}, t, allsolutions, explicit);


My problem is that Maple tries to solve this - I get Evaluating in the bottom left corner of the window - but never seems to return with a solution even after using 52,000s and 5GB of memory: I am using a late model macbook.

Can anyone see a way of re-framing this equation so that Maple can return an answer?

hi,

I want to setup quantum mechanical angular momentum operators and kets such that i can do something like:

Lz[2] . Ket(??, j, m) -> m hbar        (instead of getting m as eigenvalue)

L^2[1] . Ket(??, j, m) -> j (j+1) hbar^2           (instead of getting j)

where L and Lz are quantum operators. 

maybe if i knew how to do 

QuantumOp . Ket{QuantumOp, j) -> j (j+1)

i could do it with explicit tensor products of Kets - one for j, one for m?

can somebody give me an idea of how to do this, or point me at an example?

many thanks,

larry

I was just wondering if someone could explain why kernelopts(maxdigits) = 38654705646, as in is this different for a differing computer, or is there a design aspect of maple that requires it to be this number, or is there a mathematical reason?

Hi all. I have two questions about polynomials over Q.

i) Let f,g be polynomials over Q. How to show (with Maple) that the decomposition field of f is included in the decomposition field of g?

ii) Let f be a polynomial of degree n  over Q with Galois group C_n, the cyclic group of order n. Then, there is a polynomial P with coefficients in Q, of degree n-1, s.t. the iteration: u0=some root of f, u_{k+1}=P(u_k) gives all the roots of f; how to find P (with Maple)?

Thanks in advance.

Hello.

I have this problem when executing the entire worksheet or selected groups.
Also Maple can crash by itself, to its heart's content)
What I can do to solve this problem?
OS: W7 x64, Java is up to date

Thx.

(a) Plot the graph of  
                       sin(x)*exp( -x^2)
 for x in the interval [-2,2]. 
(b) Find to 10 decimal digits the maximum and minimum values of 
                         sin(x)*exp( -x^2)
 for x in [-2,2] AND find the corresponding values of x. [So if the maximum occurs at x=a, you should also compute sin(x)*exp( -x^2)   both to 10 digits. Similarly for the minimum. Using unapply to make the expression into a function will be useful here.]  

So far I have this for a

> j := exp(-x^2)*sin(x);

> plot(j, x = -2 .. 2);

 

There is a one-to-one correspondence between subsets of {1, 2, . . . , n} and binary lists of length n, that is, lists L = [x1, x2 , . . . , xn] where x1, x2, . . . , xn are elements of the set {0,1}.  The correspondence is given by associating to the set S the list L where xi = 1 if i is in S and 0 if not. For example, the set {1,3,5} corresponds to the list [1,0,1,0,1,0,0] if n = 7.

(a) Write a procedure list_to_set whose input is a binary list and whose output is the corresponding set. E. g., list_to_set([1,0,1,0,1]) will return the set {1,3,5}. Note that nops(L) is the length of a list.

(b) Write a procedure set_to_list whose input is a pair S,n where S is a subset of {1, 2, . . . , n} and n is a positive integer and whose output is the binary list of length n corresponding to the set S. E. g., if n = 5 then set_to_list({1,3,5},5) will return [1,0,1,0,1].

(c) Show by a few tests that each procedure works. Then apply set_to_list to each set in the powerset of {1, 2, 3, 4} to form all binary lists of length 4. Make a program to print out a table of the following form. (But the order need not be the same as that started below.)

   [0,0,0,0] <-->  {  }
   [1,0,0 0] <--> { 1 }
   [0,1,0,0] <--> { 2 } 
    ........
    etc

Some extra commas in the output is okay. You may obtain the power set of the set {1,2,...,n} by the command powerset(n); but you must first load the package combinat.

The expression X^n, for an interger power n and any X, can be computed using the following formulae, which represent a negative power in terms of a positive power (-n), and a positive power in terms of a smaller non-negative power (either n/2 or n-1), and use only multiplication and division: 
                                    
                          X^n = 1/X^(-n)                      if n < 0 
                          X ^n = I*d                             if n = 0
                          X ^n  = X^(n/2) * X^(n/2)      if n is even
                          X^n  = X*X^(n-1)                  if n is odd.
These formulae lead to an efficient recursive algorithm for computing integer powers using the minimal number of multiplications. 

(a) Write a procedure MatPow(X,n::integer) to implement this algorithm for computing powers of matrices. Test MatPow(<<1|2>,<3|4>>,12) and MatPow(<<1|2>,<3|4>>,-12).

(b) Write a procedure PolyPow(X,n::integer) to implement this algorithm for computing powers of numbers and polynomials. Your procedure needs to exapnd each product of polynomials in order to be effective. Test PolyPow(123,12), PolyPow(123,-12), PolyPow(x^2+1,12) and PolyPow(x^2+1,-12). 

Write a procedure using the variable args that will take an unspecified finite number of numbers, delete the smallest and the largest, and return the average of the rest as a floating point number. If there are fewer than 3 arguments have an error message say: "There are not enough arguments. There should be at least three." 

You should have no input parameters in the definition of the procedure. You may write it directly or you may use the Maple command sort as a part of your program. Do ?sort to see how sort works. Test your procedure with each of the following argument sequences:  

   50,40,40, 40, 40, 10

   1,2

   seq(100 - i, i = 1..100)

   seq(modp(n,111), n=1..1000).


If n people (numbered 1 to n) stand in a circle and someone starts going around the circle and eliminating every other person till only one person is left, the number J(n) of the person left at the end is given by 

    J(n) = 1                           if n = 1
    J(n) = 2*J(n/2) - 1          if n > 1 and n is even
    J(n) = 2*J((n-1)/2) + 1   if  n > 1 and n is odd

(i) Write a recursive procedure to compute J. [As a check the first 16 values (starting with 1) of J(n) are 1,1,3,1,3,5,7,1,3,5,7,9,11,13,15,1]. 
(ii)Compute the value of J(10000). 
(iii) Can you explain why this is so much faster than our recursive procedure to compute the n-th Fibonacci number?

Has anyone installed and run maple under ubuntu installed the Windows Subsystem for Linux?   We are having trouble doing this: specifically running programs with text input files, etc.

 

 

I have a say sum(F(k) ,k=1..n)  It fails unless n is an actual integer.  But sum(F(k), k=1..a) works. Then then eval(%,a=n) completes it. That is probably correct but not necessarily a valid assumption. Details in attached. Also it is hard to understand the error message.
 

restart

``

``

Sinta := (k^2+n^2-k)*n/((k^2+n^2-2*k+1)*(k^2+n^2))

(k^2+n^2-k)*n/((k^2+n^2-2*k+1)*(k^2+n^2))

(1)

Ai := sum(Sinta, k = 1 .. n)

-((1/2)*I)*(2*n^2+I*n)*Psi(n-I*n)/(4*n^2+1)+((1/2)*I)*(2*n^2-I*n)*Psi(n+I*n)/(4*n^2+1)+((1/2)*I)*(-2*n^2+I*n)*Psi(n+1-I*n)/(4*n^2+1)-((1/2)*I)*(-2*n^2-I*n)*Psi(n+1+I*n)/(4*n^2+1)+((1/2)*I)*(2*n^2+I*n)*Psi(-I*n)/(4*n^2+1)-((1/2)*I)*(2*n^2-I*n)*Psi(I*n)/(4*n^2+1)-((1/2)*I)*(-2*n^2+I*n)*Psi(1-I*n)/(4*n^2+1)+((1/2)*I)*(-2*n^2-I*n)*Psi(1+I*n)/(4*n^2+1)

(2)

Souta := n/(k^2+n^2-k)

n/(k^2+n^2-k)

(3)

NULL

sum(Souta, k = 1 .. n)

Error, (in assuming) when calling 'Dfnt_4'. Received: 'when calling 'Dfnt_4'. Received: 'when calling 'unknown'. Received: 'invalid input: Dfnt_4 expects its 3rd argument, fpts, to be of type Or(list, piecewise), but received 0'''

 

"(->)"

Error, invalid input: evalf[10] expects 1 argument, but received 0

 

 

 

This works

sum(Souta, k = 1 .. a)

n*Psi(a+1/2-(1/2)*(-4*n^2+1)^(1/2))/(-4*n^2+1)^(1/2)-n*Psi(a+1/2+(1/2)*(-4*n^2+1)^(1/2))/(-4*n^2+1)^(1/2)-n*Psi(1/2-(1/2)*(-4*n^2+1)^(1/2))/(-4*n^2+1)^(1/2)+n*Psi(1/2+(1/2)*(-4*n^2+1)^(1/2))/(-4*n^2+1)^(1/2)

(4)

Ao := eval(%, a = n)

n*Psi(n+1/2-(1/2)*(-4*n^2+1)^(1/2))/(-4*n^2+1)^(1/2)-n*Psi(n+1/2+(1/2)*(-4*n^2+1)^(1/2))/(-4*n^2+1)^(1/2)-n*Psi(1/2-(1/2)*(-4*n^2+1)^(1/2))/(-4*n^2+1)^(1/2)+n*Psi(1/2+(1/2)*(-4*n^2+1)^(1/2))/(-4*n^2+1)^(1/2)

(5)

"(->)"

n*Psi(n+.5000000000-.5000000000*(-4.*n^2+1.)^(1/2))/(-4.*n^2+1.)^(1/2)-1.*n*Psi(n+.5000000000+.5000000000*(-4.*n^2+1.)^(1/2))/(-4.*n^2+1.)^(1/2)-1.*n*Psi(.5000000000-.5000000000*(-4.*n^2+1.)^(1/2))/(-4.*n^2+1.)^(1/2)+n*Psi(.5000000000+.5000000000*(-4.*n^2+1.)^(1/2))/(-4.*n^2+1.)^(1/2)

(6)

````

``


 

Download Summation_problem.mw

Dear Users!

Hope you would be fine. I want to construct system of equations by comparing the likes powers of x^i*y^j*t^k1*exp(k2*eta) for an expression H1 present in attached file. Please see the fix my problem. I shall be very thankful for your kind help. 

Help.mw

From  time to tiime Malel emits a sort of "Boiing" noise when I make a keyboard error. I am not sure exaclty when it does this, but it is loud. Is it possible to turn it off? I have looked quite extensively and cannot find out anything.

In the following problem at two example are given. For Z=2 the sum is converging whereas at Z=4 it is not converging. Thank you

 

PROBLEM.mw

First 95 96 97 98 99 100 101 Last Page 97 of 2097