Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

How to find the series.I'm getting this error.Please help to solve this.

AF.mw

I want to express my two variable function f using Taylor expansion. But no success yet.

Why Taylor series can not estimate my function in desired interval [-1<x,y<1]?

restart

with(Student[MultivariateCalculus]):

 

f := -5023626067733175609651265492842895195168362165*xx^5*yy^9*(1/5575186299632655785383929568162090376495104)+2207379816207475241162406248223006569040862935*xx^5*yy^8*(1/2787593149816327892691964784081045188247552)+5795161625895678368156852916105373987594511979*xx^6*(1/22300745198530623141535718272648361505980416)-539977758872163289054492124375185771143918033*xx^6*yy*(1/696898287454081973172991196020261297061888)+782685832362921584689673760969891945953777553*xx^6*yy^2*(1/5575186299632655785383929568162090376495104)+749877940244270735637721966049124917356845885*xx^6*yy^3*(1/174224571863520493293247799005065324265472)+14159347676475748959036290080103848146860867025*xx^6*yy^4*(1/11150372599265311570767859136324180752990208)-2937701213452088192123555543440803264914467299*xx^6*yy^5*(1/348449143727040986586495598010130648530944)-23673134207774883972271882396704370580007933039*xx^6*yy^6*(1/5575186299632655785383929568162090376495104)-62755544772437504320590342390381422715234113715/89202980794122492566142873090593446023921664+35696532930567486560276536615522532283474689213*yy*(1/2787593149816327892691964784081045188247552)+43423414494451507811145033075147441881593811799*yy^2*(1/22300745198530623141535718272648361505980416)+1173296429365947392287371443632107462978009165*xx^6*yy^7*(1/174224571863520493293247799005065324265472)-56566850002827011453690682806041619180254985625*yy^3*(1/696898287454081973172991196020261297061888)+57447439083834576362467553225131370438848237035*xx^6*yy^8*(1/22300745198530623141535718272648361505980416)-1277356081222180962342283013232991241852904465*xx^6*yy^9*(1/696898287454081973172991196020261297061888)-29946355461657315300256240552185966952551471*xx^7*(1/1393796574908163946345982392040522594123776)+998213736763384913910074759047227544847506773*xx^7*yy*(1/11150372599265311570767859136324180752990208)-2038600361316622246653155899145012259420048867785*yy^4*(1/44601490397061246283071436545296723011960832)+10578825782023300845453772557509072093336001*xx^7*yy^2*(1/43556142965880123323311949751266331066368)-4303517165264733669855129139552505045324631645*xx^7*yy^3*(1/11150372599265311570767859136324180752990208)-652299342907430898149182084981866414949696905*xx^7*yy^4*(1/696898287454081973172991196020261297061888)+11170081785792631086653879206603595320491089331*xx^7*yy^5*(1/11150372599265311570767859136324180752990208)+116540829629507365267125159526451609264014215*xx^7*yy^6*(1/87112285931760246646623899502532662132736)+211134394987302797546644924545169826774270265159*yy^5*(1/1393796574908163946345982392040522594123776)-14785537121406447202257499440081382142298519099*xx^7*yy^7*(1/11150372599265311570767859136324180752990208)+1970986683407627074325019523003479974617451789943*yy^6*(1/22300745198530623141535718272648361505980416)-868641325364973493898126340263842300348545855*xx^7*yy^8*(1/1393796574908163946345982392040522594123776)+216255546256559295251079313253452049445763455*xx^7*yy^9*(1/348449143727040986586495598010130648530944)-4089215965643055747590786827106386135115380275*xx^8*(1/89202980794122492566142873090593446023921664)+1869246621670048362557342074310025153518449965*xx^8*yy*(1/2787593149816327892691964784081045188247552)+18712604797880071317805036942199122521197359575*xx^8*yy^2*(1/22300745198530623141535718272648361505980416)-3479476522267890993628796487849129439635143625*xx^8*yy^3*(1/696898287454081973172991196020261297061888)-77131555128675321096947207038878222843991869993*yy^7*(1/696898287454081973172991196020261297061888)-206512033439850904054937113093163624192322042825*xx^8*yy^4*(1/44601490397061246283071436545296723011960832)+15350689937843699961175740256400109996121380375*xx^8*yy^5*(1/1393796574908163946345982392040522594123776)+157001869330425518481531763580902779395436599415*xx^8*yy^6*(1/22300745198530623141535718272648361505980416)-6686861200533386632065997818427854246215113305*xx^8*yy^7*(1/696898287454081973172991196020261297061888)-3917684154726736823398471536296978037714283086195*yy^8*(1/89202980794122492566142873090593446023921664)-285743684916570536194588196441080828723328178675*xx^8*yy^8*(1/89202980794122492566142873090593446023921664)+8094790880015327525694605814920739418439287725*xx^8*yy^9*(1/2787593149816327892691964784081045188247552)+30423874459994412977383604476886160940746185*xx^9*(1/5575186299632655785383929568162090376495104)-1197236208181378637639504269592639035279087665*xx^9*yy*(1/44601490397061246283071436545296723011960832)-72716798311978341010558827315982986191821905*xx^9*yy^2*(1/696898287454081973172991196020261297061888)+5138909461003175489938484170634052266819688725*xx^9*yy^3*(1/44601490397061246283071436545296723011960832)+1206817075246069632318716986669541278160772775*xx^9*yy^4*(1/2787593149816327892691964784081045188247552)-12993287722661922638788467553649639108437064835*xx^9*yy^5*(1/44601490397061246283071436545296723011960832)-431284328058774504067793959976795724976545555*xx^9*yy^6*(1/696898287454081973172991196020261297061888)+17639360745426635511855086638766468926126459875*xx^9*yy^7*(1/44601490397061246283071436545296723011960832)-2146702909675882809503682033933399905335826325*xx^9*yy^9*(1/11150372599265311570767859136324180752990208)+1587967252519403636411870604735180043125989625*xx^9*yy^8*(1/5575186299632655785383929568162090376495104)+76828297887427851822683521168415270943435162685*yy^9*(1/2787593149816327892691964784081045188247552)+220816865194317615868568855814620996552449073*xx*(1/5575186299632655785383929568162090376495104)-9205355621994819342146712860571987786619361601*xx*yy*(1/44601490397061246283071436545296723011960832)-104255809907916433055923335622932126645726549*xx*yy^2*(1/696898287454081973172991196020261297061888)+27484692689867334306687311759874973819976026005*xx*yy^3*(1/44601490397061246283071436545296723011960832)+1583056855557692418384969876461998197073089695*xx*yy^4*(1/2787593149816327892691964784081045188247552)-36304948749180317956941914133403396762716230691*xx*yy^5*(1/44601490397061246283071436545296723011960832)-590212436135125327923049635849260481403670583*xx*yy^6*(1/696898287454081973172991196020261297061888)+27046038795224386955728969793334632924015008227*xx*yy^7*(1/44601490397061246283071436545296723011960832)+2168816628024980374461014350770096009019357665*xx*yy^8*(1/5575186299632655785383929568162090376495104)-2255097230860381206152749351617455809672044745*xx*yy^9*(1/11150372599265311570767859136324180752990208)+35122173917479363738100862234581108137514304171*xx^2*(1/22300745198530623141535718272648361505980416)-17449701902039745490242163912540688306429882361*xx^2*yy*(1/696898287454081973172991196020261297061888)-11540959773500599403794316292492996114189538863*xx^2*yy^2*(1/5575186299632655785383929568162090376495104)+27287439738914744607616926917914225474665410565*xx^2*yy^3*(1/174224571863520493293247799005065324265472)+929769947314964740179937673332890647768037984465*xx^2*yy^4*(1/11150372599265311570767859136324180752990208)-100809382380090436397261413740272360141145204891*xx^2*yy^5*(1/348449143727040986586495598010130648530944)-930314746723434588666177195703059675161177190255*xx^2*yy^6*(1/5575186299632655785383929568162090376495104)+36390552938954376406834468187448925576623439893*xx^2*yy^7*(1/174224571863520493293247799005065324265472)+1872760743346397986120124413411813119412045269675*xx^2*yy^8*(1/22300745198530623141535718272648361505980416)-35643509355104072817665294345590475660747146425*xx^2*yy^9*(1/696898287454081973172991196020261297061888)-125283292999146417157156696376640452081866835*xx^3*(1/1393796574908163946345982392040522594123776)+5011420945327438626354964312196465908094234685*xx^3*yy*(1/11150372599265311570767859136324180752990208)+29341459645317546529685572705520876577051855*xx^3*yy^2*(1/87112285931760246646623899502532662132736)-15637727799880882327290754576104647826715168925*xx^3*yy^3*(1/11150372599265311570767859136324180752990208)-851688199122087410134053760306093104684621525*xx^3*yy^4*(1/696898287454081973172991196020261297061888)+23458516464006675395891679247259419002768896835*xx^3*yy^5*(1/11150372599265311570767859136324180752990208)+39584968580329795728950940517214770307434335*xx^3*yy^6*(1/21778071482940061661655974875633165533184)-20361225581568567923686744589522827658576624955*xx^3*yy^7*(1/11150372599265311570767859136324180752990208)-1174244552874873223035231031480900497934023075*xx^3*yy^8*(1/1393796574908163946345982392040522594123776)+941109349474535911451616661821106567867537125*xx^3*yy^9*(1/1393796574908163946345982392040522594123776)-48412290717709997717153300332089796247538326265*xx^4*(1/44601490397061246283071436545296723011960832)+17196469545705046799299985950707233685621881055*xx^4*yy*(1/1393796574908163946345982392040522594123776)-9551461763890264957289963973620923748598225435*xx^4*yy^2*(1/11150372599265311570767859136324180752990208)-26051472095770585704126329008135447818638784275*xx^4*yy^3*(1/348449143727040986586495598010130648530944)-765302392604646459013613426858243443467023490875*xx^4*yy^4*(1/22300745198530623141535718272648361505980416)+94251624724512021502035994822030873708141367565*xx^4*yy^5*(1/696898287454081973172991196020261297061888)+843981485493394825713526892530506348990296828805*xx^4*yy^6*(1/11150372599265311570767859136324180752990208)-33218490572036542393092937176469859040906121155*xx^4*yy^7*(1/348449143727040986586495598010130648530944)-1758702445038817232726176779731884586549332868025*xx^4*yy^8*(1/44601490397061246283071436545296723011960832)+31380186488931551370058361496245928395816772575*xx^4*yy^9*(1/1393796574908163946345982392040522594123776)+184838927094446995029201369223921105703104647*xx^5*(1/2787593149816327892691964784081045188247552)-6817973449093402642853212701104432585928821163*xx^5*yy*(1/22300745198530623141535718272648361505980416)-113510140727511300460098712979462156361337425*xx^5*yy^2*(1/348449143727040986586495598010130648530944)+23570688854853763073042723518782612790921757535*xx^5*yy^3*(1/22300745198530623141535718272648361505980416)+1613038118657167505912389296857854524947676825*xx^5*yy^4*(1/1393796574908163946345982392040522594123776)-44608078263668464626393951292252447406629869273*xx^5*yy^5*(1/22300745198530623141535718272648361505980416)-588774433706353379897742534304221654039246663*xx^5*yy^6*(1/348449143727040986586495598010130648530944)+47950825635610780986659544491454706340397108297*xx^5*yy^7*(1/22300745198530623141535718272648361505980416):

g := .5*(1+tanh(f)):

plot3d(g, xx = -1 .. 1, yy = -1 .. 1, color = red, style = surface)

 

 

h := Student:-MultivariateCalculus:-TaylorApproximation(g, [xx, yy] = [0, 0], 35):

plot3d(h, xx = -1 .. 1, yy = -1 .. 1, color = red, style = surface)

 

 

Download taylorProblem.mw

How I can solve a PDE on two regions with matching conditions at the common boundary?  

T1.mw

In Maple 2023 I haven't been able to sign in to the Maple Cloud.
In Maple 2022 there was no problem. In fact in my Maple 2022.2 I'm actually signed in right now.

I need this to get updates to the Physics updates. 
The toolbar in 2023.2 has a grayed out icon saying "Sign in". Nothing happens if I click on it.

PS. I'm also signed in right now to Maple 2021.2. So the problem couldn't be that I cannot be logged in to more than one Maple release.

[Moderator: long pasted output deleted - OP has provided file in reply]

For years I've been angry that Maple isn't capable of formally manipulating random vectors (aka multivariate random variables).
For the record Mathematica does.

The problem I'm concerned with is to create a vector W such that

type(W, RandomVariable)

will return true.
Of course defining W from its components w1, .., wN, where each w is a random variable is easy, even if these components are correlated or, more generally dependent ( the two concepts being equivalent iif all the w are gaussian random variables).
But one looses the property that W is no longer a (multivariate) random variable.
See a simple example here: NoRandomVectorsInMaple.mw

This is the reason why I've developped among years several pieces of code to build a few multivariate random variable (multinormal, Dirichlet, Logistic-Normal, Skew Multivariate Normal, ...).

In the framework of my activities, they are of great interest and the purpose of this post is to share what I have done on this subject by presenting the most classic example: the multivariate gaussian random variable.

My leading idea was (is) to build a package named MVStatistics on the image of the Statistics package but devoted to Multi Variate random variables.
I have already construct such a package aggregating about fifty different procedures. But this latter doesn't merit the appellation of "Maple package" because I'm not qualified to write something like this which would be at the same time perennial, robust, documented, open and conflict-free with the  Statistics package.
In case any of you are interested in pursuing this work (because I'm about to change jobs), I can provide it all the different procedures I built to construct and manipulate multivariate random variables.

To help you understand the principles I used, here is the most iconic example of a multivariate gaussian random variable.
The attached file contains the following procedures

MVNormal
  Constructs a gaussian random vector whose components can be mutually correlated
  The statistics defined in Distribution are: (this list could be extended to other
  statistics, provided they are "recognized" statitics, see at the end of this 
  post):
      PDF
      Mode
      Mean
      Variance
      StandardDeviation = add(s[k]*x[k], k=1..K)
      RandomSample

DispersionEllipse
  Builds and draws the dispersion ellipses of a bivariate gaussia, random vector

DispersionEllipsoid
  Builds and draws the dispersion ellipsoids of a trivariate gaussia, random vector

MVstat
  Computes several statistics of a random vector (Mean, Variance, ...)

Iserlis
  Computes the moments of any order of a gaussian random vector

MVCentralMoment
  Computes the central moments of a gaussian random vector

Conditional
  Builds the conditional random vector of a gaussian random vector wrt some of its components 
  the moments of any order of a gaussian random vector.
  Note: the result has type RandomVariable.

MarginalizeAgainst
  Builds the marginal random vector of a gaussian random vector wrt some of its components 
  the moments of any order of a gaussian random vector.
  Note: the result has type RandomVariable.

MardiaNormalityTest
  The multi-dimensional analogue of the Shapiro-Wilks normality test

HZNormalityTest
  Henze-Zirkler test for Multivariate Normality

MVWaldWolfowitzTest
  A multivariate version of the non-parametrix Wald-Folfowitz test

Do not hesitate to ask me any questions that might come to mind.
In particular, as Maple introduces limitations on the type of some attributes (for instance Mean  must be of algebraic type), I've been forced to lure it by transforming vector or matrix quantities into algebraic ones.
An example is

Mean = add(m[k]*x[k], k=1..K)

where m[k] is the expectation of the kth component of this random vector.
This implies using the procedure MVstat to "decode", for instance, what Mean returns and write it as a vector.

MultivariateNormal.mw

About the  statistics ths Statistics:-Distribution constructor recognizes:
To get them one can do this (the Normal distribution seems to be the continuous one with the most exhaustive list os statistics):

restart
with(Statistics):
X := RandomVariable(Normal(a, b)):
attributes(X);
      protected, RandomVariable, _ProbabilityDistribution

map(e -> printf("%a\n", e), [exports(attributes(X)[3])]):
Conditions
ParentName
Parameters
CharacteristicFunction
CDF
CGF
HodgesLehmann
Mean
Median
MGF
Mode
PDF
RousseeuwCrouxSn
StandardDeviation
Support
Variance
CDFNumeric
QuantileNumeric
RandomSample
RandomSampleSetup
RandomVariate
MaximumLikelihoodEstimate

Unfortunately it happens that for some unknown reason a few statistics cannot be set by the user.
This is for instance the case of Parameters serious consequences in certain situations.
Among the other statistics that cannot be set by the user one finds:

  • ParentName,
  • QuantileNumeric  whose role is not very clear, at least for me, but which I suspect is a procedure which "inverts" the CDF to give a numerical estimation of a quantile given its probability.
    If it is so accessing  QuantileNumeric would be of great interest for distributions whose the quantiles have no closed form expressions.
  • CDFNumeric  (same remark as above)

Finally, the statistics Conditions, which enables defining the conditions the elements of Parameters must verify are not at all suited for multivariate random variables.
It is for instance impossible to declare that the variance matrix (or the correlation matrix) is a square symmetric positive definite matrix).

According to the documentation of MmaTranslator:-Mma:-PolynomialReduce, this command yields . However, 

restart;
MmaTranslator:-Mma:-PolynomialReduce(x**2+y**2,{x-y,y+a});
 = 
                       [         2    2]
                       [[0, 0], x  + y ]

In[1]:= PolynomialReduce[x^2+y^2,{x-y,y+a}](*Mathematica*)

Out[1]= {{x + y, -2 a + 2 y}, 2 a^2}

In SymPy and in MuPAD: 

The output of both is the same as that of Mma; only the result given by Maple is inconsistent with Mathematica's. 

The example above is so simple that the desired result can be found simply by hand. Here is a larger example: 
Given two polynomials .txt and .txt, as well as a list of polynomials .txt, I would like to evaluate 

# Suppose that one has downloaded these three files. 
poly1, poly2 := fscanf("poly1.txt", "%a")[], fscanf("poly2.txt", "%a")[]:
pList := MmaTranslator:-Mma:-ReadList("pList.txt"):
MmaTranslator:-Mma:-PolynomialReduce((a - poly1)*(a - poly2), pList);

 But its result is just “[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ]”, while when a=0 it should be “[[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 1, 2, 1, 0, 2, 2, 3, 1, 1, 1, 2, 1, 0, 0, 0, 1, 1, 2, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0], 0]”.
So why does  return a distinct value?

How would I solve for the product of two terms ( s*V or s^2*V). This is a simple example but I would be applying this on much higher order equations.

     V = Vx/(a*s^2 + b*s + c)

How do i retrieve the expression fra a "Fit" command so that i can use the expression for later calculations.

As you can see from the picture below, i use the "Fit" command to find an expression based on the values specified in X and Y. From there i would like to use the expression to find points on the line and to automate the proces. I can succesfully retrieve the expression by using the reference label, but is there another way to retrieve the expression so that i can avoid having to display the expression after evaluating?

I guess the question can be rephrased to: How do i retrieve the same information as the label reference does, but with a command and without using a label reference?

Hello, 

What would be the procedure to find the eigenvalues for a coupled harmonic oscillators characterized by eigenvalue E1 and E2? Are they treated as parameters in the numerical solution of the system of ode?

thanks in advance 

Hello,

I am having problems using RowEchelonTransform from the LinearAlgebra[Modular] package. According to the documentation, it returns a triple

Q,rp,d:=LinearAlgebra[Modular][RowEchelonTransform](p, M, false, false, false, false):

where Q and rp are vectors of length r=rank(M). In more detail, rp=[c1,...,cr] lists the (linearly independent) pivot columns, and Q is a list of transpositions that can be used to construct the pivot rows (denoted by the matrix P in the documentation).

Anyway, these details are not so important. My problem is that Q is not always a list of length r. The example

p:=29:
M:=LinearAlgebra[Modular][Mod](p, [[-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,1,-1,-1,-1,-1],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,-1,-1,1,1,1,1],[0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,-1,0,0,0,1],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,0,-1],[0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,0],[0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,0,0,0,0],[0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0]], integer[]):
Q,rp,d:=LinearAlgebra[Modular][RowEchelonTransform](p, M, false, false, false, false):

is a 16x39 matrix M of full rank r=16. I get the output

Q=[1, 9, 5, 5, 13, 10, 10, 11, 10, 14, 15, 12, 15, 16, 16]
rp=[1, 2, 3, 4, 5, 8, 9, 10, 11, 15, 16, 18, 19, 22, 29, 34]

where rp has 16 elements as expected, but Q has only 15 elements.

Hence there is either a bug in RowEchelonTransform, or the documentation of its output is inaccurate.

I reported this to technical support (the Software Change Request Form on MaplePrimes sadly does not work and shows an error when I tried to submit the filled form).

In the meantime, does anyone know a workaround for this?

With thanks,

Erik

Since (1/h)[f(i+1,t)-f(i,t)]=f(x,t)_{x} as h goes to zero, 'i' is the discrete index along x-axis. How to do it in Maple? How to reduce Eq. (5) into continuous derivatives?

restart

with(LinearAlgebra)

with(PDEtools)

with(Physics)

with(plots)

Setup(mathematicalnotation = true)

[mathematicalnotation = true]

(1)

``

U := proc (i, t) options operator, arrow; Matrix([[1+I*(q(i+1, t)-q(i, t))/lambda, I*(r(i+1, t)-r(i, t))/lambda], [I*(r(i+1, t)-r(i, t))/lambda, 1-I*(q(i+1, t)-q(i, t))/lambda]]) end proc

proc (i, t) options operator, arrow; Matrix([[1+Physics:-`*`(Physics:-`*`(I, q(i+1, t)-q(i, t)), Physics:-`^`(lambda, -1)), Physics:-`*`(Physics:-`*`(I, r(i+1, t)-r(i, t)), Physics:-`^`(lambda, -1))], [Physics:-`*`(Physics:-`*`(I, r(i+1, t)-r(i, t)), Physics:-`^`(lambda, -1)), 1-Physics:-`*`(Physics:-`*`(I, q(i+1, t)-q(i, t)), Physics:-`^`(lambda, -1))]]) end proc

(2)

``

V := proc (i, t) options operator, arrow; Matrix([[-((1/2)*I)*lambda, -r(i, t)], [r(i, t), ((1/2)*I)*lambda]]) end proc

proc (i, t) options operator, arrow; Matrix([[Physics:-`*`(Physics:-`*`(Physics:-`*`(Physics:-`*`(1, Physics:-`^`(2, -1)), I), lambda), -1), Physics:-`*`(r(i, t), -1)], [r(i, t), Physics:-`*`(Physics:-`*`(Physics:-`*`(1, Physics:-`^`(2, -1)), I), lambda)]]) end proc

(3)

NULL

z := diff(U(i, t), t)+U(i, t).V(i, t)-V(i+1, t).U(i, t)

Matrix(%id = 4525182530)

(4)

z11 := simplify(lambda*z[1, 1]/h, size) = 0

I*(r(i+1, t)^2-r(i, t)^2+(D[2](q))(i+1, t)-(diff(q(i, t), t)))/h = 0

(5)

NULL

Download limit.mw

Hi:

I am using solve(...,allsolutions)

and Maple is giving me the default "_Z1~" as part of the solution. No problem.

But when I go back and run the same statement again without a restart, it gives me "_Z2~" and my program fails because it is looking to substitute a value for "_Z1".

How do I reset the naming convention without restarting so I can get the same output each time I run the same statement. (BTW: The same thing happens with Veil where it increments the indices of the Veil symbol each time you run the same statement)..

Thank you.

When opening a new Worksheet I am given an option to start a new server. When I close said worksheet the server closes. With no worksheets open I can see "Server 2" is available. If use it to open a new worksheet and the close said worksheet, "Server 2" remains available. Is this normal? Is it actually available or is it just a display feature?

I am really confused by this behavior. Should the solution be different when calling dsolve(ode) vs. dsolve(ode,[x(t),y(t)]) where here ode is list of two coupled first order ode's?

Maple shows the solutions in reverse order in one case vs. the other. I do not see why adding [x(t),y(t)] should make x(t) solution now y(t)'s and y(t) solution now x(t)'s.  Here is an example

Here is worksheet. I just find the out changing very confusing. Should not the same solution for x(t) and y(t) remain the same regardless of adding the second option as list of not? What is the logic behaind this change or order, and how it one to know which is the correct one as they look different.

``

interface(version);

`Standard Worksheet Interface, Maple 2023.2, Windows 10, October 25 2023 Build ID 1753458`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1592 and is the same as the version installed in this computer, created 2023, November 27, 3:41 hours Pacific Time.`

restart;

20440

ode :=[diff(x(t), t) = (3*x(t))/2 + 2*y(t), diff(y(t), t) = x(t)/2 + y(t)]

[diff(x(t), t) = (3/2)*x(t)+2*y(t), diff(y(t), t) = (1/2)*x(t)+y(t)]

simplify(dsolve(ode,[x(t),y(t)]));

{x(t) = -(1/2)*c__2*(17^(1/2)-1)*exp(-(1/4)*(-5+17^(1/2))*t)+(1/2)*c__1*exp((1/4)*(5+17^(1/2))*t)*(17^(1/2)+1), y(t) = c__1*exp((1/4)*(5+17^(1/2))*t)+c__2*exp(-(1/4)*(-5+17^(1/2))*t)}

simplify(dsolve(ode));

{x(t) = c__1*exp((1/4)*(5+17^(1/2))*t)+c__2*exp(-(1/4)*(-5+17^(1/2))*t), y(t) = -(1/8)*c__2*(17^(1/2)+1)*exp(-(1/4)*(-5+17^(1/2))*t)+(1/8)*c__1*exp((1/4)*(5+17^(1/2))*t)*(17^(1/2)-1)}

#when using SET instead of LIST, then same solutions come out as above
simplify(dsolve(ode,{x(t),y(t)}));

{x(t) = c__1*exp((1/4)*(5+17^(1/2))*t)+c__2*exp(-(1/4)*(-5+17^(1/2))*t), y(t) = -(1/8)*c__2*(17^(1/2)+1)*exp(-(1/4)*(-5+17^(1/2))*t)+(1/8)*c__1*exp((1/4)*(5+17^(1/2))*t)*(17^(1/2)-1)}

 

Download why_solution_changes_nov_27_2023.mw

First 29 30 31 32 33 34 35 Last Page 31 of 2097