Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I know how to contruct an isoscele ABCD trapeze knowing the 2L length of AB and BC=CD=CD=a. But I don't know answer to that question : L being fixed together with points A and B , show that the place of C when a varies is a branch of hyberbola. Here is my code.

restart; unprotect(O, D);
with(plots):
Vdot := proc (U, V) add(U[i]*V[i], i = 1 .. 2) end:
dist := proc (M, N) sqrt(Vdot(expand(M-N), expand(M-N))) end:
_EnvHorizontalName := x: _EnvVerticalName := y:
O:=[0,0]:A:=[-L,0]:alpha:=arccos((2*L-a)^2/(2*a*(2*L-a))):h:=tan(alpha)*(2*L-a)/2:
B:=[L,0]:C:=[L-(2*L-a)/2,h]:D:=[-L+(2*L-a)/2,h]:
L := 6; a := 7;
poly := [A, B, C, D, A];tp := textplot([[A[], "A"], [B[], "B"], [C[], "C"], [D[], "D"]], color = black, 'align' = {'above', 'right'});
trapeze := polygonplot(poly, axes = normal, color = "DarkGreen", transparency = .9);
display([tp, trapeze], scaling = constrained); Thank you foryour help.

Hi everyone:

I want to write the below serie in Maple, how can I do it?

where: k = 0,.....,n

n is a Natural number.

tnx...

Dear Users!

I want to find the solution of the solution of PDEs as given bellow:

restart;
PDE1 := diff(u(y, t), t)+diff(u(y, t), t, t) = diff(u(y, t), y, y)-u(y, t);
PDE2 := v(y, t)+diff(tau(y, t), t) = diff(u(y, t), y);
ICandBC := {tau(y, 0) = 0, u(0, t) = 0, u(3, t) = 0, u(y, 0) = 0, (D[2](u))(y, 0) = 0};
pds := pdsolve({PDE1, PDE2}, ICandBC, numeric);

But got the following error

Error, (in pdsolve/numeric/process_PDEs) number of dependent variables and number of PDE must be the same
Kindly help me to fix this error. I shall be very thankful. 

Special request to:
@acer @Carl Love @Kitonum @Preben Alsholm

I have created a set of help files using the example templates. After I create the .help file and install it with my package, I can view the help pages in the help viewer. However, when I click on any link within a help page, the target page opens as a worksheet in Maple. I understand this is because I created the hyperlink with a worksheet as the target. However, I don't know where to obtain the help topic name for a help page before it has been created.  I have searched help, but can't find any applicable guidance.  Can anyone tell me how to determine the help topic name when first creating the help pages.

I have attached one of my help file worksheets.     Hlpdiracmatrices.mw

Hello,

I defined a vector (in cartesian coordinates) with Physics[Vectors] as

q_:=3 _i + 5 _j + 2 _k

Then I wanted do a transformation on this vector by multiplying it with matrix

M:=<3,4,2|5,6,2|2,1,4>
M.q_

However, I am getting a result where every element of the matrix is multiplied by the vector.

If I define q as <3,5,2> then matrix multiplication works as one would expect.

So, my question is how can I have a matrix multiplication with a vector defined with Physics[Vectors] package?

Dear Maple community,

I would really appreciate it if you could tell me how I can solve numerically in Maple the following system of equations (the Maple file containing these equations can be found here: Mapleprime_Q.mw):

 

Thank you very much in advance for you help!

Hello,

When I create a vector in spherical coordinates and map it to cartesian coordinates with Physics[Vectors] package as follows,

restart:with(Physics[Vectors]):
q_:=a _r + b _theta + c _phi
ChangeBasis(q_,cartesian)

I get the answer:

(a*cos(phi)*sin(theta)+b*cos(phi)*cos(theta)-c*sin(phi)) i + (a*sin(theta)*sin(phi)+b*cos(theta)*sin(phi)+c*cos(phi)) j + (-b*sin(theta)+a*cos(theta)) k

which is what I would expect.

But if I try to do that with VectorCalculus package as follows,

q := SetCoordinates(<a, b, c>, spherical)
MapToBasis(q, cartesian)

This gives 

(a*sin(b)*cos(c)) ex + (a*sin(b)*sin(c)) ey + (a*cos(b)) ez

I am confused about this!

The SetCoordinates(<a, b, c>, spherical) command outputs

q:=(a) er  + (b) ephi + (c) etheta

here, a,b, and c are  depicted as the components of the vector q in spherical coordinates, but when I map to cartesian coordinates, a,b, and c are treated as if they were the coordinates in spherical coordinates rather than components-- unlike ChangeBasis in Physics[Vectors] package.

Why are these two different?

Good evening,

is it possible to construct a math table with Maple just with Code? Something like

      test_1    test_2

a       9,6        5,6

b     pending  8,4     

to be able to print it? There is

https://de.maplesoft.com/support/help/Maple/view.aspx?path=worksheet/documenting/table            and

https://de.maplesoft.com/support/help/Maple/view.aspx?path=worksheet%2freference%2ftableproperties   

, however, I do not understand how to just get any table going and assign calculated values within a procedure as is possible with a matrix for example. Thank you in advance! :)

 

Hello, I am trying to plot this one and I did not get the graph, I don't know where the problem. Could you please help. thank you

 

restart;
with(plots):

alpha := 0.005;
beta := 0.01;
                          beta := 0.01

mu := 0.005;
                          mu := 0.005

m := 0.003;
                           m := 0.003

u := 0.3;
                            u := 0.3

w := 0.3;
                            w := 0.3

v := 1;
                             v := 1

gamma = 0.1;
                          gamma = 0.1

Gamma := 0.01;
                         Gamma := 0.01

Eq := sigma^4 + sigma^3*[2*(mu*v + mu) + 2*alpha - beta*(u + w) + 2*beta*v] + sigma^2*[4*mu*m + 2*alpha*(2*mu + m) + alpha^2 - 2*beta*v(mu - 2*m) - 2*beta*(u + w)*(mu + m) + alpha*beta*(4*beta + (-u - w)) - beta^2*v*(u + w - v) + k^2*(Gamma^2 + gamma^2)] + sigma*[2*alpha*mu*(2*m - beta*(u + w)) + 2*alpha^2*(beta*v + mu) - 4*beta*mu*m*(u + w + v) + 4*alpha*beta*v*(mu + m) - 2*beta^2*v*(u + w) + 2*beta^2*v^2*(m + alpha) - alpha*beta^2*v*(u + w) + 2*Gamma^2*beta*v*k^2 + 2*k^2*(Gamma^2*mu + gamma^2*m) + gamma^2*k^2*(2*alpha - beta*(u + w))] + [Gamma^2*k^2*(2*beta*mu*v + gamma^2) + Gamma^2*beta^2*k^2*v*(Gamma*v - gamma*(u + w)) - beta*gamma^2*k^2*(u + w)*(alpha + 2*m) + alpha^2*(beta^2*v^2 + gamma^2*k^2) + 2*alpha*beta^2*v*(v*m - mu*(u + w)) + 4*beta*mu*m*v*(alpha - beta*(u + w))];
p1 := implicitplot(Eq, k = 0 .. 10, sigma = -0.1 .. 0.1);
           4
Eq := sigma 

          3                                                       
   + sigma  [2 mu v + 2 alpha + 2 mu - beta (u + w) + 2 beta v] + 

       2 [                                   2
  sigma  [4 mu m + 2 alpha (2 mu + m) + alpha 

   - 2 beta v(mu - 2 m) - 2 beta (u + w) (mu + m)

                                       2              
   + alpha beta (4 beta - u - w) - beta  v (u + w - v)

      2 /     2        2\]         [               
   + k  \Gamma  + gamma /] + sigma [2 alpha mu (2 m

                            2              
   - beta (u + w)) + 2 alpha  (beta v + mu)

   - 4 beta mu m (u + w + v) + 4 alpha beta v (mu + m)

           2                   2  2            
   - 2 beta  v (u + w) + 2 beta  v  (m + alpha)

               2                    2         2
   - alpha beta  v (u + w) + 2 Gamma  beta v k 

        2 /     2           2  \
   + 2 k  \Gamma  mu + gamma  m/

          2  2                         ]   [     2  2 /           
   + gamma  k  (2 alpha - beta (u + w))] + [Gamma  k  \2 beta mu v

          2\        2     2  2                            
   + gamma / + Gamma  beta  k  v (Gamma v - gamma (u + w))

               2  2                      
   - beta gamma  k  (u + w) (alpha + 2 m)

          2 /    2  2        2  2\
   + alpha  \beta  v  + gamma  k /

                 2                     
   + 2 alpha beta  v (v m - mu (u + w))

                                         ]
   + 4 beta mu m v (alpha - beta (u + w))]


[k1,0], [k2,0], [k3,0], ...) , where k_{n}=2*n*Pi/L and the domain [0,L] 
L:=10.0;
p2:=pointplot([seq([2*n*Pi/L,0],n=0..10)],color=red,symbolsize=15):
display(p1,p2);
                           L := 10.0

       /            /     4
display\implicitplot\sigma 

          3                                                       
   + sigma  [2 mu v + 2 alpha + 2 mu - beta (u + w) + 2 beta v] + 

       2 [                                   2
  sigma  [4 mu m + 2 alpha (2 mu + m) + alpha 

   - 2 beta v(mu - 2 m) - 2 beta (u + w) (mu + m)

                                       2              
   + alpha beta (4 beta - u - w) - beta  v (u + w - v)

      2 /     2        2\]         [               
   + k  \Gamma  + gamma /] + sigma [2 alpha mu (2 m

                            2              
   - beta (u + w)) + 2 alpha  (beta v + mu)

   - 4 beta mu m (u + w + v) + 4 alpha beta v (mu + m)

           2                   2  2            
   - 2 beta  v (u + w) + 2 beta  v  (m + alpha)

               2                    2         2
   - alpha beta  v (u + w) + 2 Gamma  beta v k 

        2 /     2           2  \
   + 2 k  \Gamma  mu + gamma  m/

          2  2                         ]   [     2  2 /           
   + gamma  k  (2 alpha - beta (u + w))] + [Gamma  k  \2 beta mu v

          2\        2     2  2                            
   + gamma / + Gamma  beta  k  v (Gamma v - gamma (u + w))

               2  2                      
   - beta gamma  k  (u + w) (alpha + 2 m)

          2 /    2  2        2  2\
   + alpha  \beta  v  + gamma  k /

                 2                     
   + 2 alpha beta  v (v m - mu (u + w))

                                         ]               
   + 4 beta mu m v (alpha - beta (u + w))], k = 0 .. 10, 

                     \                                         
  sigma = -0.1 .. 0.1/, pointplot([[0., 0], [0.6283185308, 0], 

  [1.256637062, 0], [1.884955592, 0], [2.513274124, 0], 

  [3.141592654, 0], [3.769911184, 0], [4.398229716, 0], 

  [5.026548246, 0], [5.654866778, 0], [6.283185308, 0]], 

                               \
  color = red, symbolsize = 15)/

Hello.

 

I plot  F1:=1/(x + μ) + x - 1 and on the graph i get the line x = -μ. How can I get rid of it? I try the discont option but I get an error. Do I need, maybe, a specific with command?

The command I use is the next one:

 

diagd1_1 := implicitplot(F1 = 0, mu = -8 .. 8, x = -4 .. 4, gridrefine = 5, crossingrefine = 15, rational, color = blue, thickness = 2, numpoints = 100000, resolution = 3000, rangeasview)

 

The error I get:

Error, (in plot/options2d) unexpected option: discont = True

 

 

Thanks a lot !!!

I recently found this piece of code while using showstat:

if type(i,{'symbol', not ('symbol')}) then
...
end if

At first glance, this felt strange to me, because it looked like if we were checking whether "i" was of the "symbol" type or of a type other than "symbol", and therefore the test was still true.

Doing a simple test I obtain this

if type(s,{'symbol', not ('symbol')}) then "TRUE" else "FALSE" end if;
                             "TRUE"
if type(cos(c),{'symbol', not ('symbol')}) then "TRUE" else "FALSE" end if;
                            "FALSE"

Could you explain me what  not ('symbol') really means?

TIA

I have this equation: 
cpd = 2/(1 + exp(-0.004*200)) - 1

i want it to give me a new equation for cp (not solving the equation). 
what i've tried:

2/(1 + exp(-0.004*200)) - 1 = cpd = 0.379948962
q1 := 0.379948 = 2/(1 + exp(-0.004*cp)) - 1
isolate(q1, cp) = cp = 199.99 (this is the answer but i want the equation)

if this is not clear enough then i will give a simpe example: 

given equation: x-2 = 5
WHAT I DON'T WANT: x = 3

WHAT I WANT: x=5-2

For example, can a worksheet display a radius vector rotating through equally spaced points on a circle at a constantly reducing angular velocity?

i have a big code some times maple get stuck in a certain evaluation  
How can I issue a command to Maple to stop an command  if the time expands for a specific time?

Hello there, 

When I tried to use 'solve' command to solve an algebraic matrix equation, I got this error:

Would you please tell me the correct way to solve it?

eq6_3_sol := T__PhPh = solve(eq6_3_1, T__PhPh);
Error, invalid input: solve expects its 1st argument, eqs, to be of type {`and`, `not`, `or`, algebraic, relation(algebraic), ({list, set})({`and`, `not`, `or`, algebraic, relation(algebraic)})}, but received (Vector(3, {(1) = cos(omega__o*t), (2) = -cos(omega__o*t+(1/3)*Pi), (3) = -sin(omega__o*t+(1/6)*Pi)})) = T__PhPh . (Vector(3, {(1) = cos(omega__i*t), (2) = -cos(omega__i*t+(1/3)*Pi), (3) = -sin(omega__i*t+(1/6)*Pi)}))
 

The matrix equation I tried to solve is presented below:

(sorry for the duplication below, perhaps the Maple app which is supposed to display the content of the worksheet is not too happy with Microsoft Edge browser)

Download Q20210127.mw

 

First 321 322 323 324 325 326 327 Last Page 323 of 2097