Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Delay differential equations in Chebfun lists 15 examples "taken from the literature". Many of them can be (numerically) solved in Maple without difficulty, yet when I attempt to solve the  in the above link, Maple's internal solver `dsolve/numeric` just halts with an error. 

plots:-odeplot(dsolve({D(u)(t) + u(t)**2 + 2*u(1/2*t) = 1/2*exp(t), u(0) = u(1/3)}, type = numeric, range = 0 .. 1/3), size = ["default", "golden"]);
Error, (in dsolve/numeric) delay equations are not supported for bvp solvers

Even if I guess an initial (or final) value artificially, the solution is still less reliable (For instance, what is the approximate endpoint value? 0.26344 or 0.2668?): 

restart;
dde := D(u)(t) + u(t)**2 + u(t/2)*2 = exp(t)/2:
x__0 := 2668/10000:
sol0 := dsolve([dde, u(0) = x__0], type = numeric, 'delaymax' = 1/6, range = 0 .. 1/3):
plots['odeplot'](sol0, [[t, u(t)], [t, x__0]], 'size' = ["default", "golden"]);

x__1 := 26344/100000:
sol1 := dsolve([dde, u(1/3) = x__1], type = numeric, 'delaymax' = 1/6, range = 0 .. 1/3):
plots['odeplot'](sol1, [[t, u(t)], [t, x__1]], size = ["default", "golden"]);

Compare:  (Note that the reference numerical solution implies that its minimum should be no less than 0.258 (Is this incorrect?).).

And actually, the only known constraint is simply u(0)=u(⅓) (so neither value is known beforehand). Can Maple process this boundary condition automatically (that is, without the need for manual preprocessing and in absence of any other prior information)?
I have read the help page How to | Numeric Delay Differential Equations and Numerical Solution of Difficult ODE Boundary Value Problems, but it appears that those techniques are more or less ineffective here. So, how do I solve such a "first order nonlinear 'BVP' with pantograph delay" in Maple?

I'm unsure how to fix the error with sin, the help guide suggests using the command Describe (Sin)

#Clear memory.
restart;

#Initialise variables and arrays.
h:=((pi/20)^2);
n:=15;
k:=0.1;
m:=10;
t:=Array(0..m):
x:=Array(0..n):
u:=Array(0..n,0..m):

#Initialise the x array and the initial u(x,0) boundary.
   for i from 0 to n do
x[i]:=i*h;
u[i,0]:=x[i];
end do:

#Initialise the t array and the u(x,t)side boundaries.
  for j from 0 to m do
t[j]:=j*k;
u[0,j]:=0;
u[n,j]:=pi/2;
end do:

#Use the 2D explicit finite difference method.
for j from 0 to m-1 do
    for i from 1 to n-1 do
      u[i,j+1]:=(400*u[i-1,j]-400*u[i,j]+400*u[i+1,j]+1)/(pi^2)*(4*sin(2*x));
  end do;
end do:

#Display the u(x,t) values.
printf("2D Explicit Finite Difference Method\n");
printf("------------------------------------\n");
printf(" x\t\t t\t\t u\n");
for i from 0 to n do
    printf("% 9.4f\t% 9.4f\t% 9.4f\n",x[i],t[m],u[i,m]);
end do;

(1/400)*pi^2

 

15

 

.1

 

10

 

Error, invalid input: sin expects its 1st argument, x, to be of type algebraic, but received Array(0..15, [0,1/200*pi^2,1/100*pi^2,3/200*pi^2,1/50*pi^2,1/40*pi^2,3/100*pi^2,7/200*pi^2,1/25*pi^2,9/200*pi^2,1/20*pi^2,11/200*pi^2,3/50*pi^2,13/200*pi^2,7/100*pi^2,3/40*pi^2])

 

2D Explicit Finite Difference Method
------------------------------------
 x                 t                 u
   0.0000           1.0000           0.0000

 

Error, (in fprintf) number expected for floating point format

 

NULL

Download Asst_2_Q3bcd.mw

#Clear memory.
restart;

#Initialise variables and arrays.
h:=0.1;
n:=10;
x:=Array(0..n):
y:=Array(0..n):
x[0]:=0;
y[0]:=2;
yd:=-1;

#Initialise the x array.
for i from 1 to n do
    x[i]:=x[0]+i*h;
end do:

#Calculate the first y value.
y[1]:=(203*y[0]-22*yd+4)/220:

#Calculate the remaining y values.
for i from 1 to n-1 do
    y[i+1]:=203*y[i]-110*y[i-1]+4*exp^(-3*x[i])/110;
end do:

#Display the x and y arrays.
printf("1D Explicit Finite Difference Method\n");
printf("------------------------------------\n");
printf("x\t\ty\n");
for i from 0 to n do
     printf("%f\t %f\n",x[i],y[i]);
end do;

 

.1

 

10

 

0

 

2

 

-1

 

1D Explicit Finite Difference Method
------------------------------------
x                y
0.000000         2.000000
0.100000         1.963636
0.200000         

 

Error, (in fprintf) number expected for floating point format

 

NULL

Download Asst_2_Q1c.mw

I dont understand the cause of this error, can anyone please assist?

Hi,

I am trying to write a procedure that takes two intervals of real numbers (in interval notation) and checks if one is a subset of the other. For example, isSubset([-5,2],[-10,infinity)) would return true, but isSubset([-5,2],(-5,infinity)) would return false. Any idea how to go about this? I am having difficulty knowing where to start.

Thanks!

Dear all

I have an equation, I would like to collect or regroup all similar terms 

MCode.mw

Thank you 

Hello!!

Matrice: (x,y)=(-2,-3),(-1,2),(3,4),(1,-2)

When plotting 3 lines with points are ok, but the fourth line os missing! All 4 points are there

How to include the 4th line?

Kjell

For instance, “[1, 2, 3]”, “[``([1, 2]), uneval([3])]”, and “[[1, 2], [3, 'NULL']]” are fully rectangular. “[1, 2, [3]]”, “[`[]`(1, 2), [3]]”, and “[[1, 2], [3, NULL]]” are considered nonrectangular, but if we temporarily freeze the "ragged" parts or regard them as a depth-1 container, the corresponding expressions will seem rectangular. `type(…, list(Non(list)))` and `type(…, listlist(Non(list)))` check these, but they do not work for general cases.
To be specific, the desired output should be something like

IsRectangular([[[l, 2], [3, 4]], [[5, 6], [7, 8]]]);
 = 
                            true, 3

IsRectangular([[[O, l, 2], [3, 4]], [[5, 6], [7, 8]]]);
 = 
                            false, 2

IsRectangular([[[[l], 2], [3, 4]], [[5, 6], [7, 8]]], 3);
 = 
                            true, 3

IsRectangular([[O, [l, 2], [3, 4]], [[5, 6], [7, 8]]], 2);
 = 
                            false, 1

The results above can be obtained by some observations. However, if the input has deeper levels, evaluating this will be a punishing work: 

test__1 := [[[[[[[[-288],[-287],[-286]],[[-285],[-284],[-283]],[[-282],[-281],[-280]],[[-279],[-278],[-277]]]],[[[[-276],[-275],[-274]],[[-273],[-272],[-271]],[[-270],[-269],[-268]],[[-267],[-266],[-265]]]],[[[[-264],[-263],[-262]],[[-261],[-260],[-259]],[[-258],[-257],[-256]],[[-255],[-254],[-253]]]]],[[[[[-252],[-251],[-250]],[[-249],[-248],[-247]],[[-246],[-245],[-244]],[[-243],[-242],[-241]]]],[[[[-240],[-239],[-238]],[[-237],[-236],[-235]],[[-234],[-233],[-232]],[[-231],[-230],[-229]]]],[[[[-228],[-227],[-226]],[[-225],[-224],[-223]],[[-222],[-221],[-220]],[[-219],[-218],[-217]]]]]],[[[[[[-216],[-215],[-214]],[[-213],[-212],[-211]],[[-210],[-209],[-208]],[[-207],[-206],[-205]]]],[[[[-204],[-203],[-202]],[[-201],[-200],[-199]],[[-198],[-197],[-196]],[[-195],[-194],[-193]]]],[[[[-192],[-191],[-190]],[[-189],[-188],[-187]],[[-186],[-185],[-184]],[[-183],[-182],[-181]]]]],[[[[[-180],[-179],[-178]],[[-177],[-176],[-175]],[[-174],[-173],[-172]],[[-171],[-170],[-169]]]],[[[[-168],[-167],[-166]],[[-165],[-164],[-163]],[[-162],[-161],[-160]],[[-159],[-158],[-157]]]],[[[[-156],[-155],[-154]],[[-153],[-152],[-151]],[[-150],[-149],[-148]],[[-147],[-146],[-145]]]]]],[[[[[[-144],[-143],[-142]],[[-141],[-140],[-139]],[[-138],[-137],[-136]],[[-135],[-134],[-133]]]],[[[[-132],[-131],[-130]],[[-129],[-128],[-127]],[[-126],[-125],[-124]],[[-123],[-122],[-121]]]],[[[[-120],[-119],[-118]],[[-117],[-116],[-115]],[[-114],[-113],[-112]],[[-111],[-110],[-109]]]]],[[[[[-108],[-107],[-106]],[[-105],[-104],[-103]],[[-102],[-101],[-100]],[[-99],[-98],[-97]]]],[[[[-96],[-95],[-94]],[[-93],[-92],[-91]],[[-90],[-89],[-88]],[[-87],[-86],[-85]]]],[[[[-84],[-83],[-82]],[[-81],[-80],[-79]],[[-78],[-77],[-76]],[[-75],[-74],[-73]]]]]],[[[[[[-72],[-71],[-70]],[[-69],[-68],[-67]],[[-66],[-65],[-64]],[[-63],[-62],[-61]]]],[[[[-60],[-59],[-58]],[[-57],[-56],[-55]],[[-54],[-53],[-52]],[[-51],[-50],[-49]]]],[[[[-48],[-47],[-46]],[[-45],[-44],[-43]],[[-42],[-41],[-40]],[[-39],[-38],[-37]]]]],[[[[[-36],[-35],[-34]],[[-33],[-32],[-31]],[[-30],[-29],[-28]],[[-27],[-26],[-25]]]],[[[[-24],[-23],[-22]],[[-21],[-20],[-19]],[[-18],[-17],[-16]],[[-15],[-14],[-13]]]],[[[[-12],[-11],[-10]],[[-9],[-8],[-7]],[[-6],[-5],[-4]],[[-3],[-2],[-1],[-0]]]]]]],[[[[[[[0],[1],[2]],[[3],[4],[5]],[[6],[7],[8]],[[9],[10],[11]]]],[[[[12],[13],[14]],[[15],[16],[17]],[[18],[19],[20]],[[21],[22],[23]]]],[[[[24],[25],[26]],[[27],[28],[29]],[[30],[31],[32]],[[33],[34],[35]]]]],[[[[[36],[37],[38]],[[39],[40],[41]],[[42],[43],[44]],[[45],[46],[47]]]],[[[[48],[49],[50]],[[51],[52],[53]],[[54],[55],[56]],[[57],[58],[59]]]],[[[[60],[61],[62]],[[63],[64],[65]],[[66],[67],[68]],[[69],[70],[71]]]]]],[[[[[[72],[73],[74]],[[75],[76],[77]],[[78],[79],[80]],[[81],[82],[83]]]],[[[[84],[85],[86]],[[87],[88],[89]],[[90],[91],[92]],[[93],[94],[95]]]],[[[[96],[97],[98]],[[99],[100],[101]],[[102],[103],[104]],[[105],[106],[107]]]]],[[[[[108],[109],[110]],[[111],[112],[113]],[[114],[115],[116]],[[117],[118],[119]]]],[[[[120],[121],[122]],[[123],[124],[125]],[[126],[127],[128]],[[129],[130],[131]]]],[[[[132],[133],[134]],[[135],[136],[137]],[[138],[139],[140]],[[141],[142],[143]]]]]],[[[[[[144],[145],[146]],[[147],[148],[149]],[[150],[151],[152]],[[153],[154],[155]]]],[[[[156],[157],[158]],[[159],[160],[161]],[[162],[163],[164]],[[165],[166],[167]]]],[[[[168],[169],[170]],[[171],[172],[173]],[[174],[175],[176]],[[177],[178],[179]]]]],[[[[[180],[181],[182]],[[183],[184],[185]],[[186],[187],[188]],[[189],[190],[191]]]],[[[[192],[193],[194]],[[195],[196],[197]],[[198],[199],[200]],[[201],[202],[203]]]],[[[[204],[205],[206]],[[207],[208],[209]],[[210],[211],[212]],[[213],[214],[215]]]]]],[[[[[[216],[217],[218]],[[219],[220],[221]],[[222],[223],[224]],[[225],[226],[227]]]],[[[[228],[229],[230]],[[231],[232],[233]],[[234],[235],[236]],[[237],[238],[239]]]],[[[[240],[241],[242]],[[243],[244],[245]],[[246],[247],[248]],[[249],[250],[251]]]]],[[[[[252],[253],[254]],[[255],[256],[257]],[[258],[259],[260]],[[261],[262],[263]]]],[[[[264],[265],[266]],[[267],[268],[269]],[[270],[271],[272]],[[273],[274],[275]]]],[[[[276],[277],[278]],[[279],[280],[281]],[[282],[283],[284]],[[285],[286],[287]]]]]]]]:
test__2 := [[[[[[[[-288],[-287],[-286]],[[-285],[-284],[-283]],[[-282],[-281],[-280]],[[-279],[-278],[-277]]]],[[[[-276],[-275],[-274]],[[-273],[-272],[-271]],[[-270],[-269],[-268]],[[-267],[-266],[-265]]]],[[[[-264],[-263],[-262]],[[-261],[-260],[-259]],[[-258],[-257],[-256]],[[-255],[-254],[-253]]]]],[[[[[-252],[-251],[-250]],[[-249],[-248],[-247]],[[-246],[-245],[-244]],[[-243],[-242],[-241]]]],[[[[-240],[-239],[-238]],[[-237],[-236],[-235]],[[-234],[-233],[-232]],[[-231],[-230],[-229]]]],[[[[-228],[-227],[-226]],[[-225],[-224],[-223]],[[-222],[-221],[-220]],[[-219],[-218],[-217]]]]]],[[[[[[-216],[-215],[-214]],[[-213],[-212],[-211]],[[-210],[-209],[-208]],[[-207],[-206],[-205]]]],[[[[-204],[-203],[-202]],[[-201],[-200],[-199]],[[-198],[-197],[-196]],[[-195],[-194],[-193]]]],[[[[-192],[-191],[-190]],[[-189],[-188],[-187]],[[-186],[-185],[-184]],[[-183],[-182],[-181]]]]],[[[[[-180],[-179],[-178]],[[-177],[-176],[-175]],[[-174],[-173],[-172]],[[-171],[-170],[-169]]]],[[[[-168],[-167],[-166]],[[-165],[-164],[-163]],[[-162],[-161],[-160]],[[-159],[-158],[-157]]]],[[[[-156],[-155],[-154]],[[-153],[-152],[-151]],[[-150],[-149],[-148]],[[-147],[-146],[-145]]]]]],[[[[[[-144],[-143],[-142]],[[-141],[-140],[-139]],[[-138],[-137],[-136]],[[-135],[-134],[-133]]]],[[[[-132],[-131],[-130]],[[-129],[-128],[-127]],[[-126],[-125],[-124]],[[-123],[-122],[-121]]]],[[[[-120],[-119],[-118]],[[-117],[-116],[-115]],[[-114],[-113],[-112]],[[-111],[-110],[-109]]]]],[[[[[-108],[-107],[-106]],[[-105],[-104],[-103]],[[-102],[-101],[-100]],[[-99],[-98],[-97]]]],[[[[-96],[-95],[-94]],[[-93],[-92],[-91]],[[-90],[-89],[-88]],[[-87],[-86],[-85]]]],[[[[-84],[-83],[-82]],[[-81],[-80],[-79]],[[-78],[-77],[-76]],[[-75],[-74],[-73]]]]]],[[[[[[-72],[-71],[-70]],[[-69],[-68],[-67]],[[-66],[-65],[-64]],[[-63],[-62],[-61]]]],[[[[-60],[-59],[-58]],[[-57],[-56],[-55]],[[-54],[-53],[-52]],[[-51],[-50],[-49]]]],[[[[-48],[-47],[-46]],[[-45],[-44],[-43]],[[-42],[-41],[-40]],[[-39],[-38],[-37]]]]],[[[[[-36],[-35],[-34]],[[-33],[-32],[-31]],[[-30],[-29],[-28]],[[-27],[-26],[-25]]]],[[[[-24],[-23],[-22]],[[-21],[-20],[-19]],[[-18],[-17],[-16]],[[-15],[-14],[-13]]]],[[[[-12],[-11],[-10]],[[-9],[-8],[-7]],[[-6],[-5],[-4]],[[-3],[-2,0],[-0]]]]]]],[[[[[[[-1],[1],[2]],[[3],[4],[5]],[[6],[7],[8]],[[9],[10],[11]]]],[[[[12],[13],[14]],[[15],[16],[17]],[[18],[19],[20]],[[21],[22],[23]]]],[[[[24],[25],[26]],[[27],[28],[29]],[[30],[31],[32]],[[33],[34],[35]]]]],[[[[[36],[37],[38]],[[39],[40],[41]],[[42],[43],[44]],[[45],[46],[47]]]],[[[[48],[49],[50]],[[51],[52],[53]],[[54],[55],[56]],[[57],[58],[59]]]],[[[[60],[61],[62]],[[63],[64],[65]],[[66],[67],[68]],[[69],[70],[71]]]]]],[[[[[[72],[73],[74]],[[75],[76],[77]],[[78],[79],[80]],[[81],[82],[83]]]],[[[[84],[85],[86]],[[87],[88],[89]],[[90],[91],[92]],[[93],[94],[95]]]],[[[[96],[97],[98]],[[99],[100],[101]],[[102],[103],[104]],[[105],[106],[107]]]]],[[[[[108],[109],[110]],[[111],[112],[113]],[[114],[115],[116]],[[117],[118],[119]]]],[[[[120],[121],[122]],[[123],[124],[125]],[[126],[127],[128]],[[129],[130],[131]]]],[[[[132],[133],[134]],[[135],[136],[137]],[[138],[139],[140]],[[141],[142],[143]]]]]],[[[[[[144],[145],[146]],[[147],[148],[149]],[[150],[151],[152]],[[153],[154],[155]]]],[[[[156],[157],[158]],[[159],[160],[161]],[[162],[163],[164]],[[165],[166],[167]]]],[[[[168],[169],[170]],[[171],[172],[173]],[[174],[175],[176]],[[177],[178],[179]]]]],[[[[[180],[181],[182]],[[183],[184],[185]],[[186],[187],[188]],[[189],[190],[191]]]],[[[[192],[193],[194]],[[195],[196],[197]],[[198],[199],[200]],[[201],[202],[203]]]],[[[[204],[205],[206]],[[207],[208],[209]],[[210],[211],[212]],[[213],[214],[215]]]]]],[[[[[[216],[217],[218]],[[219],[220],[221]],[[222],[223],[224]],[[225],[226],[227]]]],[[[[228],[229],[230]],[[231],[232],[233]],[[234],[235],[236]],[[237],[238],[239]]]],[[[[240],[241],[242]],[[243],[244],[245]],[[246],[247],[248]],[[249],[250],[251]]]]],[[[[[252],[253],[254]],[[255],[256],[257]],[[258],[259],[260]],[[261],[262],[263]]]],[[[[264],[265],[266]],[[267],[268],[269]],[[270],[271],[272]],[[273],[274],[275]]]],[[[[276],[277],[278]],[[279],[280],[281]],[[282],[283],[284]],[[285],[286],[287]]]]]]]]:
test__3 := [[[[[[[[-288],[-287],[-286]],[[-285],[-284],[-283]],[[-282],[-281],[-280]],[[-279],[-278],[-277]]]],[[[[-276],[-275],[-274]],[[-273],[-272],[-271]],[[-270],[-269],[-268]],[[-267],[-266],[-265]]]],[[[[-264],[-263],[-262]],[[-261],[-260],[-259]],[[-258],[-257],[-256]],[[-255],[-254],[-253]]]]],[[[[[-252],[-251],[-250]],[[-249],[-248],[-247]],[[-246],[-245],[-244]],[[-243],[-242],[-241]]]],[[[[-240],[-239],[-238]],[[-237],[-236],[-235]],[[-234],[-233],[-232]],[[-231],[-230],[-229]]]],[[[[-228],[-227],[-226]],[[-225],[-224],[-223]],[[-222],[-221],[-220]],[[-219],[-218],[-217]]]]]],[[[[[[-216],[-215],[-214]],[[-213],[-212],[-211]],[[-210],[-209],[-208]],[[-207],[-206],[-205]]]],[[[[-204],[-203],[-202]],[[-201],[-200],[-199]],[[-198],[-197],[-196]],[[-195],[-194],[-193]]]],[[[[-192],[-191],[-190]],[[-189],[-188],[-187]],[[-186],[-185],[-184]],[[-183],[-182],[-181]]]]],[[[[[-180],[-179],[-178]],[[-177],[-176],[-175]],[[-174],[-173],[-172]],[[-171],[-170],[-169]]]],[[[[-168],[-167],[-166]],[[-165],[-164],[-163]],[[-162],[-161],[-160]],[[-159],[-158],[-157]]]],[[[[-156],[-155],[-154]],[[-153],[-152],[-151]],[[-150],[-149],[-148]],[[-147],[-146],[-145]]]]]],[[[[[[-144],[-143],[-142]],[[-141],[-140],[-139]],[[-138],[-137],[-136]],[[-135],[-134],[-133]]]],[[[[-132],[-131],[-130]],[[-129],[-128],[-127]],[[-126],[-125],[-124]],[[-123],[-122],[-121]]]],[[[[-120],[-119],[-118]],[[-117],[-116],[-115]],[[-114],[-113],[-112]],[[-111],[-110],[-109]]]]],[[[[[-108],[-107],[-106]],[[-105],[-104],[-103]],[[-102],[-101],[-100]],[[-99],[-98],[-97]]]],[[[[-96],[-95],[-94]],[[-93],[-92],[-91]],[[-90],[-89],[-88]],[[-87],[-86],[-85]]]],[[[[-84],[-83],[-82]],[[-81],[-80],[-79]],[[-78],[-77],[-76]],[[-75],[-74],[-73]]]]]],[[[[[[-72],[-71],[-70]],[[-69],[-68],[-67]],[[-66],[-65],[-64]],[[-63],[-62],[-61]]]],[[[[-60],[-59],[-58]],[[-57],[-56],[-55]],[[-54],[-53],[-52]],[[-51],[-50],[-49]]]],[[[[-48],[-47],[-46]],[[-45],[-44],[-43]],[[-42],[-41],[-40]],[[-39],[-38],[-37]]]]],[[[[[-36],[-35],[-34]],[[-33],[-32],[-31]],[[-30],[-29],[-28]],[[-27],[-26],[-25]]]],[[[[-24],[-23],[-22]],[[-21],[-20],[-19]],[[-18],[-17],[-16]],[[-15],[-14],[-13]]]],[[[[-12],[-11],[-10]],[[-9],[-8],[-7]],[[-6],[-5],[-4]],[[-3],[-2,-0]]]]]]],[[[[[[-1],[[1],[2]],[[3],[4],[5]],[[6],[7],[8]],[[9],[10],[11]]]],[[[[12],[13],[14]],[[15],[16],[17]],[[18],[19],[20]],[[21],[22],[23]]]],[[[[24],[25],[26]],[[27],[28],[29]],[[30],[31],[32]],[[33],[34],[35]]]]],[[[[[36],[37],[38]],[[39],[40],[41]],[[42],[43],[44]],[[45],[46],[47]]]],[[[[48],[49],[50]],[[51],[52],[53]],[[54],[55],[56]],[[57],[58],[59]]]],[[[[60],[61],[62]],[[63],[64],[65]],[[66],[67],[68]],[[69],[70],[71]]]]]],[[[[[[72],[73],[74]],[[75],[76],[77]],[[78],[79],[80]],[[81],[82],[83]]]],[[[[84],[85],[86]],[[87],[88],[89]],[[90],[91],[92]],[[93],[94],[95]]]],[[[[96],[97],[98]],[[99],[100],[101]],[[102],[103],[104]],[[105],[106],[107]]]]],[[[[[108],[109],[110]],[[111],[112],[113]],[[114],[115],[116]],[[117],[118],[119]]]],[[[[120],[121],[122]],[[123],[124],[125]],[[126],[127],[128]],[[129],[130],[131]]]],[[[[132],[133],[134]],[[135],[136],[137]],[[138],[139],[140]],[[141],[142],[143]]]]]],[[[[[[144],[145],[146]],[[147],[148],[149]],[[150],[151],[152]],[[153],[154],[155]]]],[[[[156],[157],[158]],[[159],[160],[161]],[[162],[163],[164]],[[165],[166],[167]]]],[[[[168],[169],[170]],[[171],[172],[173]],[[174],[175],[176]],[[177],[178],[179]]]]],[[[[[180],[181],[182]],[[183],[184],[185]],[[186],[187],[188]],[[189],[190],[191]]]],[[[[192],[193],[194]],[[195],[196],[197]],[[198],[199],[200]],[[201],[202],[203]]]],[[[[204],[205],[206]],[[207],[208],[209]],[[210],[211],[212]],[[213],[214],[215]]]]]],[[[[[[216],[217],[218]],[[219],[220],[221]],[[222],[223],[224]],[[225],[226],[227]]]],[[[[228],[229],[230]],[[231],[232],[233]],[[234],[235],[236]],[[237],[238],[239]]]],[[[[240],[241],[242]],[[243],[244],[245]],[[246],[247],[248]],[[249],[250],[251]]]]],[[[[[252],[253],[254]],[[255],[256],[257]],[[258],[259],[260]],[[261],[262],[263]]]],[[[[264],[265],[266]],[[267],[268],[269]],[[270],[271],[272]],[[273],[274],[275]]]],[[[[276],[277],[278]],[[279],[280],[281]],[[282],[283],[284]],[[285],[286],[287]]]]]]]]:

Is there a generalized test procedure (e.g., ListTools:-IsRectangular) that effectively works for any nested list of an arbitrary nesting level? 

HI every one ! i want to know how can i calculate tt component and rr component in Einstein eq or Energy-Momentum eq.please give me a cod for drive component of any equation in maple

restart;
Pr:=0.71: n:=-1:

eta0:=0.0699;

EQ1:=diff(H(x), x ) - x*diff(F(x), x ) ;
 

EQ2:=(1+x^2)*diff(F(x), x$2) + (3*x + x*F(x)-H(x))*diff(F(x), x) + F(x)^2 + G(x)^2 +2*P(x) + x*diff(P(x), x) ;

EQ3:=(1+x^2)*diff(G(x), x$2) + (3*x + x*F(x)-H(x))*diff(G(x), x) ;

EQ4:=(1+x^2)*diff(H(x), x$2) + (3*x + x*F(x)-H(x))*diff(H(x), x) + (1+F(x))*H(x)- diff(P(x), x);

EQ5:=(1+x^2)*diff(theta(x), x$2) + x*(1-2*n)*diff(theta(x), x) + n^2*theta(x) - Pr*( n*F(x)*theta(x) + ( H(x)-x*F(x) )*diff(theta(x), x)  ) ;


EQ:={EQ1=0, EQ2=0,EQ3=0,EQ4=0 ,EQ5=0}:


IC:={ F(0)=0, G(0)=12, H(0)=0, theta(0)= 1, F(eta0)=0, G(eta0)=12, H(eta0)=0, theta(eta0)= 0, P(0)=0};
 

sol:= dsolve(EQ union IC,numeric,output=Array([0,0.0699]));

ques.mw

This is most likely a simple question for the power users of this forum, but I do not manage to find a solution. I have date in an Excel file. The first column consists of dates (mm/dd/yyyy) and the second of time (hh:mm). I can easily concatenate both in Maple using cat("9/7/2023", "10:22") but how can I convert the obtained string into a date+time that Maple understands? 

Thank you in advance for your help.

I create a system of equations (with 9 linear equations and 7 variables).
I get 7 equations from the multiplication of a matrix M with a transposed vector of the 7 variables equals the transposed vector of the 7 variables. Other two simple equations are necessary because they are restrictions. Those two equations a re very simple and thave the 7 variable sin it.
To start I have been trying with fsolve but i haven't been able to solve it yet, as I also get the error: "Error, (in fsolve) number of equations, 9, does not match number of variables, 7"
Have you andy idea to solve this problem? Thanks in advance.

Below is the plot like I want it. The basic plot has been done with a simple plot command.

>plot(0, x = 0 .. 10, y = 0 .. 4, gridlines = true)

But the label of each axis was done manually. But I have tried to do it inside the plot command. A little help would be very appreciated.

So here is what I want the plot to look like:

Thank you in advance for the help.

Mario

Hi everyone,

Do you know if there are some known codes for plotting pseudospectra of squared (and finite) matrices with given spectrum ? 
Thanks in advance

Best,

Rachid

What will be the range of p and q to get the plot and to get the optimum solution?
If possible get a solution for particular value of p and q.
file attached: q1.mw

Hi all, any one help  me to find the values of constants by using given condition and then how to varify that the goiven condition varify the expression. I have found manually but want to varify through maple.

help.mw

First 51 52 53 54 55 56 57 Last Page 53 of 2097