Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Dear Users!

I have made a code using loops. But when I exceute it I go unwanted expression please see the files and try to fix it. I shall be very thankful. 

 

Help.mw

Special request to:

@acer @Kitonum @Preben Alsholm @Carl Love

For no particular reason at all, these are parametric equations that print "Maplesoft" in handwritten cursive script when plotted

restart:
X := -2.05*sin(-2.70 + 2.45*t) - 3.36*sin(1.12 + 1.43*t) - 4.82*sin(-2.19 + 2.03*t) - 2.02*sin(1.36 + 2.31*t) - 2.41*sin(1.08 + 2.59*t) - 14.2*sin(1.51 + 0.185*t) - 5.25*sin(-2.04 + 1.85*t) - 2.81*sin(0.984 + 2.36*t) - 3.01*sin(-2.04 + 1.80*t) - 1.80*sin(-2.61 + 2.73*t) - 0.712*sin(-3.94 + 1.89*t) - 6.90*sin(-1.90 + 1.52*t) - 0.600*sin(-3.39 + 2.26*t) - 0.631*sin(-4.65 + 2.68*t) - 3.10*sin(-2.22 + 2.17*t) - 2.95*sin(1.38 + 1.25*t) - 1.43*sin(0.383 + 2.40*t) - 8.25*sin(-1.66 + 0.323*t) - 1.39*sin(-3.08 + 2.63*t) - 0.743*sin(-2.43 + 0.647*t) - 6.25*sin(-1.73 + 0.832*t) - 273.*sin(-1.58 + 0.0462*t) - 4.58*sin(-2.00 + 1.48*t) - 5.70*sin(-1.80 + 1.20*t) - 2.30*sin(1.42 + 0.462*t) - 3.24*sin(1.51 + 0.277*t) - 16.0*sin(-1.64 + 0.231*t) - 1.58*sin(0.779 + 1.71*t) - 0.571*sin(-2.08 + 0.970*t) - 8.85*sin(-1.88 + 1.34*t) - 1.10*sin(-2.24 + 2.08*t) - 1.49*sin(-2.27 + 1.02*t) - 2.19*sin(-1.70 + 1.94*t) - 4.47*sin(-2.06 + 1.57*t) - 2.08*sin(-2.02 + 1.06*t) - 5.70*sin(-1.86 + 1.62*t) - 2.26*sin(-1.66 + 1.16*t) - 3.95*sin(-1.98 + 1.29*t) - 0.928*sin(-2.08 + 1.76*t) - 2.98*sin(1.36 + 1.11*t) - 0.390*sin(-2.33 + 2.22*t) - 3.81*sin(1.01 + 2.54*t) - 0.613*sin(-1.43 + 1.66*t) - 19.7*sin(-1.60 + 0.138*t) - 0.524*sin(-2.87 + 0.414*t) - 2.15*sin(-4.63 + 0.694*t) - 0.782*sin(-1.56 + 2.49*t) - 5.27*sin(-1.81 + 1.38*t) - 5.18*sin(1.51 + 0.0923*t) - 6.83*sin(1.37 + 0.923*t) - 0.814*sin(-1.72 + 0.600*t) - 2.98*sin(-1.82 + 0.738*t) - 5.49*sin(1.44 + 0.509*t) - 3.90*sin(-1.76 + 0.785*t) - 0.546*sin(-2.18 + 0.876*t) - 1.92*sin(0.755 + 1.98*t) - 8.16*sin(1.38 + 0.553*t) - 0.504*sin(-1.56 + 0.371*t) - 3.43*sin(1.14 + 2.12*t):
Y := -1.05*sin(-3.81 + 2.68*t) - 7.72*sin(-4.59 + 0.231*t) - 6.38*sin(1.37 + 1.11*t) - 4.24*sin(-2.36 + 2.31*t) - 7.06*sin(1.18 + 1.80*t) - 4.60*sin(1.28 + 2.03*t) - 0.626*sin(-0.285 + 2.45*t) - 0.738*sin(-1.89 + 2.26*t) - 1.45*sin(-1.73 + 1.57*t) - 2.30*sin(-4.51 + 2.59*t) - 9.58*sin(-2.07 + 1.71*t) - 0.792*sin(-0.578 + 0.647*t) - 4.55*sin(1.49 + 1.25*t) - 14.0*sin(-2.13 + 1.62*t) - 1.02*sin(0.410 + 0.277*t) - 19.2*sin(-1.54 + 0.0462*t) - 17.3*sin(-1.86 + 1.20*t) - 1.96*sin(-0.845 + 2.63*t) - 0.754*sin(-0.0904 + 2.73*t) - 4.74*sin(1.11 + 1.48*t) - 1.79*sin(0.860 + 2.17*t) - 25.2*sin(-1.77 + 0.832*t) - 3.88*sin(1.30 + 0.462*t) - 20.8*sin(-1.66 + 0.323*t) - 17.6*sin(1.20 + 1.29*t) - 4.83*sin(0.169 + 2.36*t) - 10.8*sin(-2.01 + 1.85*t) - 8.69*sin(-2.17 + 2.22*t) - 5.48*sin(-1.69 + 1.34*t) - 18.1*sin(1.18 + 1.43*t) - 4.71*sin(0.728 + 2.08*t) - 1.15*sin(-3.44 + 1.52*t) - 2.53*sin(-2.61 + 2.54*t) - 5.48*sin(-2.02 + 1.94*t) - 4.67*sin(1.30 + 1.66*t) - 9.10*sin(1.37 + 0.970*t) - 6.45*sin(1.31 + 1.02*t) - 5.18*sin(-2.09 + 1.76*t) - 18.3*sin(-1.77 + 1.06*t) - 27.3*sin(1.31 + 1.16*t) - 2.83*sin(-3.01 + 2.40*t) - 2.93*sin(-1.70 + 0.138*t) - 4.17*sin(-2.06 + 2.12*t) - 1.60*sin(-4.25 + 1.38*t) - 2.69*sin(-1.89 + 0.371*t) - 7.92*sin(-1.78 + 0.600*t) - 19.6*sin(-1.79 + 0.738*t) - 22.6*sin(1.48 + 0.509*t) - 13.5*sin(1.21 + 0.923*t) - 5.53*sin(-1.64 + 0.0923*t) - 1.20*sin(0.145 + 2.49*t) - 3.15*sin(-1.57 + 0.414*t) - 1.74*sin(0.655 + 1.98*t) - 3.98*sin(-2.14 + 0.876*t) - 11.3*sin(-1.82 + 0.694*t) - 10.4*sin(0.987 + 1.89*t) - 8.39*sin(-1.53 + 0.185*t) - 27.8*sin(-1.76 + 0.785*t) - 9.39*sin(1.38 + 0.553*t):
plot([X, Y, t = 0 .. 68], scaling = constrained, axes = boxed);

What is the solution to this error message when trying to run the Maple add-in for Excel?
"The specified module could not be found.  OpenMaple cannot find Maple engine library, maple.dll."

I am running Maple 19.1 and Excel 2016, both 32-bit, in Windows 7.  Excel appears to have successfully installed the Maple add-in.  For example, the Maple add-in icons appear on the Add-ins tab of Excel.  Excel shows the Maple add-in as active in the list of add-ins.  The location of he WMIMPLEX.xla is correct at "C:\Program Files (x86)\Maple\Excel\WMIMPLEX.xla.

Maple support tells me that Maple should add its "bin" folder to the PATH key for excel.exe in the registry key "Computer\HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\App Paths\excel.exe\Path".  This path information, however, is not in my computer's registry.  This missing path information might be an obvious problem.  But what is the correct registry entry so that Excel knows where to find the Maple engine library maple.dll?

I tried adding the path to maple.dll in the environmental path variables of Windows 7, but that approach did not work.  I have uninstalled, rebooted, and reinstalled Maple 2019 (32-bit) several times.  Still the same error message.

Thanks.

My name is Viorel Popescu and I am a Ph.D. candidate at University Politehnica of Bucharest, Europe. I was impressed by the article that I found on the internet about Series Solution to Differential Equation with Maple. I am trying to solve the equation g''(r)- r/R*g(r)=0 with initial condition g(2R)=0 and g'(0)=R where R>0 is a positive constant.

with(PDEtools);
pde := diff(c(x, t), x, x) - h*diff(c(x, t), x) = diff(c(x, t), t):

iv := c(0, t) = 0, c(a, t) = 0, c(x, 0) = c0:

de := pdsolve([pde, iv], c(x, t), build);

                         de := ( )

Does anyone know how to solve this PDE?
Thank you,

Oliveira

      

Is there any way to place a command to the right of an expression to perform a task? Because I only know the way that puts the command to the right.A simple example:

w1 := simplify(sin(x)2 + cos(x)2);

                       w1:=1

w2:=sin(x)2+cos(x)2:-simplify;
             Error, invalid module reference

I wonder if there is a way to put the commands, also to the right of the expressions, as above.

Thank you,

Oliveira
   

Hi,

I seeking for informations on the Statistics:-ChiSquareSuitableModelTest procedure:

  1. Once you have choose the number of bins, what strategy does this procedure use to define the bins (equal width, equal probability, other one?).
     
  2. It seems the procedure accepts any value for this number of bins and that its correct use then is under the sole responsability of the user. Am I right?


In the book below (but I'm sure this can also be found on the web) there is a detailed discussion concerning "good practices" in using the Chi-Square goodness of fit test: does anyone known is something comparable is used in ChiSquareSuitableModelTest ?

Statistical methods in experimental physics, W.T.Eadie, D. Drijard, F.F.James, M. Roos, B. Sadoulet
North-Holland 1971
Paragraph 11.2.3 "choosing optimal bin size"


Thanks in advance

Hi. I want to get a Fourier transform under the equation How to do this? Equation_is.docx

Greetings!

I am trying to solve a system of equations involving several symbols. The answer I am getting involves rootof...
I have tried to fix it, and read several post on MP, but in vain. Please help me to get a solution which does not involve root of solutions. Coz the paper I am follwing has a very elegant solution to these equations which i am failed to obtain via maple.rootof.mw



Maple Worksheet - Error

Failed to load the worksheet /maplenet/convert/rootof.mw .
 

Download rootof.mw

 

Most of the time, odetest() returns just zero if solution satisfies ode, and non-zero expression if solution does not satisfy ode.

So I was just checking for zero as return value to check if my solution was verified or not. This works for most cases.

But there are cases when odetest returns odetest/PIECEWISE` where some cases are zero and some are not.  Example is below.

For this, I still want to consider my solution as valid if one of the cases in piecwise is zero. But I am not sure what is a robust way to do this in code. Currently, I do the following

restart;
ode:=x*diff(y(x),x) = y(x)+2*(x*y(x))^(1/2);
my_sol:=y(x)=x*(ln(x/_C1)^2 - 1) - 2*(-1 + sqrt(ln(x/_C1)^2))*x;
res:=odetest(my_sol,ode);
if res<>0 then
   if type(res,'function') then #this meant to handle PIECWISE                      
      print("verified");
   else
      print("did not verify");
   fi;
else #if we come here, res=0, so I am sure it is valid.
   print("verified");
fi;

In the above, the check  type(res,'function')  is meant to catch PIECEWISE  return, since when I did type(res) Maple told me the type is function.

But I am not sure if this is a robust way to check for this, as it might be possible maple will return non zero, and also a function, but it will not be what I think it is (i.e. PIECEWISE) and then I would flag my solution as valid when it is not.

worksheet attached also.


 

restart;
ode:=x*diff(y(x),x) = y(x)+2*(x*y(x))^(1/2);
my_sol:=y(x)=x*(ln(x/_C1)^2 - 1) - 2*(-1 + sqrt(ln(x/_C1)^2))*x;
res:=odetest(my_sol,ode);
if res<>0 then
   if type(res,'function') then
      print("verified");
   else
      print("did not verify");
   fi;
else
   print("verified");
fi;

ode := x*(diff(y(x), x)) = y(x)+2*sqrt(x*y(x))

my_sol := y(x) = x*(ln(x/_C1)^2-1)-(2*(-1+sqrt(ln(x/_C1)^2)))*x

`odetest/PIECEWISE`([0, x/exp((-x+(x*y(x))^(1/2))/x) = _C1], [0, x/exp((x+(x*y(x))^(1/2))/x) = _C1], [-4*(-x^2*(-ln(x/_C1)^2+2*(ln(x/_C1)^2)^(1/2)-1))^(1/2), x/exp(-(-x+(x*y(x))^(1/2))/x) = _C1], [-4*(-x^2*(-ln(x/_C1)^2+2*(ln(x/_C1)^2)^(1/2)-1))^(1/2), x/exp(-(x+(x*y(x))^(1/2))/x) = _C1])

"verified"

 

 

Download how_to_check_odetest.mw


 

restart; _local(gamma); _local(I); m := 3; A := 10; delta := .112; rho := .23; beta := 1.4; alpha := 2.1; gamma := 1.02; q := 2.3; b1 := 50; b2 := 10; b3 := 5; b4 := 20; S(0) := b1; B(0) := b2; V(0) := b3; R(0) := b4; mu := .13; i = 1; for k from 0 to m do S(k+1) := (A*delta*k-(rho+mu)*S(k)-beta*(sum(S(m)*B(j-m), j = 0 .. m)))/(k+1); B(k+1) := -(-(mu+alpha+gamma)*B(k)+beta*(sum(S(m)*B(j-m), j = 0 .. m)))/(k+1); V(k+1) := (rho*S(k)-(1-q)*S(k)-mu*V(k))/(k+1); R(k+1) := (gamma*B(k)-mu*R(k))/(k+1) end do; s := sum(S(kk)*t^kk, kk = 0 .. m); b := sum(B(kk)*t^kk, kk = 0 .. m); v := sum(V(kk)*t^kk, kk = 0 .. m); r := sum(R(kk)*t^kk, kk = 0 .. m); SS(0) := s; BB(0) := b; VV(0) := v; RR(0) := r; S(0) := subs(t = T(i), s); B(0) := subs(t = T(i), b); V(0) := subs(t = T(i), v); R(0) := subs(t = T(i), r)

I

 

Warning, The imaginary unit, I, has been renamed _I

 

3

 

10

 

.112

 

.23

 

1.4

 

2.1

 

1.02

 

2.3

 

50

 

10

 

5

 

20

 

50

 

10

 

5

 

20

 

.13

 

i = 1

 

-18.00-1.4*S(3)*B(-3)-1.4*S(3)*B(-2)-1.4*S(3)*B(-1)-14.0*S(3)

 

32.50-1.4*S(3)*B(-3)-1.4*S(3)*B(-2)-1.4*S(3)*B(-1)-14.0*S(3)

 

75.85

 

7.60

 

3.800000000-.4480000000*S(3)*B(-3)-.4480000000*S(3)*B(-2)-.4480000000*S(3)*B(-1)-4.480000000*S(3)

 

52.81250000-2.975000000*S(3)*B(-3)-2.975000000*S(3)*B(-2)-2.975000000*S(3)*B(-1)-29.75000000*S(3)

 

-18.70025000-1.071000000*S(3)*B(-3)-1.071000000*S(3)*B(-2)-1.071000000*S(3)*B(-1)-10.71000000*S(3)

 

16.08100000-.7140000000*S(3)*B(-3)-.7140000000*S(3)*B(-2)-.7140000000*S(3)*B(-1)-7.140000000*S(3)

 

.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3)

 

55.85709723-1.296018889*S(3)*B(-3)-1.296018889*S(3)*B(-2)-1.296018889*S(3)*B(-1)-12.96018889*S(3)-.4666666667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.4666666667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.4666666667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)

 

2.748344167-.1820700000*S(3)*B(-3)-.1820700000*S(3)*B(-2)-.1820700000*S(3)*B(-1)-1.820700000*S(3)

 

17.25940667-.9805600000*S(3)*B(-3)-.9805600000*S(3)*B(-2)-.9805600000*S(3)*B(-1)-9.805600000*S(3)

 

-.2034933335+1.482334934*S(3)*B(-3)+1.482334934*S(3)*B(-2)+1.482334934*S(3)*B(-1)+14.82334934*S(3)-.3500000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.3500000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.3500000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)

 

44.36655818+.3921579862*S(3)*B(-3)+.3921579862*S(3)*B(-2)+.3921579862*S(3)*B(-1)+3.921579862*S(3)-.7291666668*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.7291666668*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.7291666668*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)

 

0.2185881458e-1-.1520195250*S(3)*B(-3)-.1520195250*S(3)*B(-2)-.1520195250*S(3)*B(-1)-1.520195250*S(3)

 

13.68262908-.2986166168*S(3)*B(-3)-.2986166168*S(3)*B(-2)-.2986166168*S(3)*B(-1)-2.986166168*S(3)-.1190000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.1190000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.1190000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)

 

50+(-22.06933333-1.4*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-1.4*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-1.4*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+5.780693334*S(3)*B(-3)+5.780693334*S(3)*B(-2)+5.780693334*S(3)*B(-1)+57.80693334*S(3))*T(i)+(2.497813333-.4480000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.4480000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.4480000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+1.849821867*S(3)*B(-3)+1.849821867*S(3)*B(-2)+1.849821867*S(3)*B(-1)+18.49821867*S(3))*T(i)^2+(-.9095153783-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+1.704919154*S(3)*B(-3)+1.704919154*S(3)*B(-2)+1.704919154*S(3)*B(-1)+17.04919154*S(3))*T(i)^3

 

10+(28.43066667-1.4*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-1.4*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-1.4*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+5.780693334*S(3)*B(-3)+5.780693334*S(3)*B(-2)+5.780693334*S(3)*B(-1)+57.80693334*S(3))*T(i)+(44.16516667-2.975000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-2.975000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-2.975000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+12.28397333*S(3)*B(-3)+12.28397333*S(3)*B(-2)+12.28397333*S(3)*B(-1)+122.8397333*S(3))*T(i)^2+(52.09000233-1.296018889*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-1.296018889*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-1.296018889*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+5.351348394*S(3)*B(-3)+5.351348394*S(3)*B(-2)+5.351348394*S(3)*B(-1)+53.51348394*S(3)-.4666666667*(-.9095153783-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+1.704919154*S(3)*B(-3)+1.704919154*S(3)*B(-2)+1.704919154*S(3)*B(-1)+17.04919154*S(3))*B(-3)-.4666666667*(-.9095153783-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+1.704919154*S(3)*B(-3)+1.704919154*S(3)*B(-2)+1.704919154*S(3)*B(-1)+17.04919154*S(3))*B(-2)-.4666666667*(-.9095153783-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.4129066667*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+1.704919154*S(3)*B(-3)+1.704919154*S(3)*B(-2)+1.704919154*S(3)*B(-1)+17.04919154*S(3))*B(-1))*T(i)^3

 

5+75.85*T(i)+(-21.81329000-1.071000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-1.071000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-1.071000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+4.422230400*S(3)*B(-3)+4.422230400*S(3)*B(-2)+4.422230400*S(3)*B(-1)+44.22230400*S(3))*T(i)^2+(2.219127367-.1820700000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.1820700000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.1820700000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+.7517791681*S(3)*B(-3)+.7517791681*S(3)*B(-2)+.7517791681*S(3)*B(-1)+7.517791681*S(3))*T(i)^3

 

20+7.60*T(i)+(14.00564000-.7140000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.7140000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.7140000000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+2.948153600*S(3)*B(-3)+2.948153600*S(3)*B(-2)+2.948153600*S(3)*B(-1)+29.48153600*S(3))*T(i)^2+(14.40924560-.9805600000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-3)-.9805600000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-2)-.9805600000*(.2906666667-.4129066667*S(3)*B(-3)-.4129066667*S(3)*B(-2)-.4129066667*S(3)*B(-1)-4.129066667*S(3))*B(-1)+4.048797611*S(3)*B(-3)+4.048797611*S(3)*B(-2)+4.048797611*S(3)*B(-1)+40.48797611*S(3))*T(i)^3

(1)


 

Download badSums2.mw

Hello. It is required to find a solution of the boundary value problem by cubic b-spline collocation

We are looking for a solution in the form of a spline S(x). A cubic spline S(x) is represented as an expansion over normalized B-splines

Perhaps someone familiar with the method and can help implement the solution on Maple? I agree to any kind of cooperation. Really need help

Dears,

I have this file (of course it's not the real file):

input parameters
A := 5;
B := 6;
C := 7;

derived parameters
E := A*B;
F := cos(A)+e^B;
G := 265/C;
Parameters to be calculated
T := E^2+G-sin(F);
U := F+E-B;

 

I'd like to find a way for changing A, B, and C (for example giving them the values 1, 2, .. ,9) and getting a table (i mean a CSV or something else) with the values of T and U calculated for the different input values.

Do you know if it is possible?

And sorry if I wrote something wrong, it's my first post, and I'm not expert with Maple. I used it many years ago at the University, and now I'm trying to use it again.

I can type expression below:

s1 := sqrt(2);
                              (1/2)
                             2     
map(op, indets(s1, sqrt));
                             /   1\ 
                            { 2, - }
                             \   2/ 
s2 := log[2](3);
                             ln(3)
                             -----
                             ln(2)
map(op, indets(s2, ln));

And expression above is error
Error, type `ln` does not exist

Can you help me?

s3:=surd(2,3);

map(op, indets(s3, surd)); --> { } 


 

````

s1 := sqrt(2)

2^(1/2)

(1)

map(op, indets(s1, sqrt))

{2, 1/2}

(2)

s2 := log[2](3)

ln(3)/ln(2)

(3)

map(op, indets(s2, log))

Error, type `log` does not exist

 

s3 := surd(2, 3)

2^(1/3)

(4)

map(op, indets(s3, surd))

{}

(5)

``


 

Download help_map_indets.mw

I want to solve the equation (-2*cos(x)^2+2*sin(x+(1/4)*Pi)^2-1)/sqrt(-x^2+4*x) = 0 in RealDomain. I tried
 

restart; 
RealDomain:-solve({(-2*cos(x)^2+2*sin(x+(1/4)*Pi)^2-1)/sqrt(-x^2+4*x) = 0}, {x});

I got four solutions

If I work around

restart;
 RealDomain:-solve({-x^2+4*x > 0, (-2*cos(x)^2+2*sin(x+(1/4)*Pi)^2-1)/sqrt(-x^2+4*x) = 0}, x);

I only got two solutions

With Mathematica, I got three solutions 

That is mean, Maple lost the solution x = 5*Pi/4. I check this thing

f:= x-> (-2*cos(x)^2+2*sin(x+(1/4)*Pi)^2-1)/sqrt(4*x-x^2) ;
f(5*Pi/4);


and got the result 0. 

Are these bugs?

First 534 535 536 537 538 539 540 Last Page 536 of 2097