Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Why does this not return a quick solution?

sol := solve(.2894606222 = .4090662520/((1+0.1481289280e-2*x)^5.034901366*(1/(1+0.1481289280e-2*x)^5.034901366)^.1986136226), x)

mw.mw

120523_problem_parallel.mw

Last execution block is not producing any output. Why?

The 3x3 nonlinear system I am trying to solve is already a stylized version of my problem, as I already:

  1. Calibrated my equations before attempting to solve for them (search for "Calib_1" in my script)
  2. Split the original 6x6 system into two 3x3 sub-systems (since 3 out of 6 variables only appear in 3 out of 6 equations) and solved for one sub-system

What else can you think of? Should I instead use the parallel solver on the whole 6x6 system rather than just the unsolved 3x3 sub-system?

How to find, if exist, singular solutions? That is, some valuation of some parameters that will yield a solution that cannot be obtained by applying the same valuation to a general solution. Carl Love (who I cannot tag) once mentioned: "The parameter valuations that lead to singular solutions can often be guessed by using valuations that would produce zeros in denominators in the general solution. A singular solution can't be expressed as any instantiation of a generic symbolic solution. By instantiation I mean an assigment of numeric values to some parameters. Here's an example:"

#2x2 matrix and 2x1 vector. 5 parameters (a, b, d, x, y). The 2 decision variables are
#unseen and unnamed in this pure matrix-vector form. Their values are the two entries 
#in the solution vectors S0 and S1.

A:= <a, b; 0, d>;  B:= <x, y>;

#Get a generic solution:
S0:= LinearAlgebra:-LinearSolve(A, B);

#Instantiate 3 parameters (a, d, y) to 0 and solve again:
S1:= LinearAlgebra:-LinearSolve(eval([A, B], [a, d, y]=~ 0)[]);

#Note that no possible instantiation of S0 can produce S1.

Thank you!

A Hamiltonian walk on a connected graph is a closed walk of minimal length which visits every vertex of a graph (and may visit vertices and edges multiple times). (See https://mathworld.wolfram.com/HamiltonianWalk.html)

 

Please note that there is a distinction between a Hamiltonian walk and a Hamiltonian cycle. Any graph can have a Hamiltonian walk, but not necessarily a Hamiltonian cycle.  The Hamiltonian number h(n) of a connected G is the length of a Hamiltonian walk. 

For example, let's consider the graph FriendshipGraph(2).

g:=GraphTheory[SpecialGraphs]:-FriendshipGraph(2);
DrawGraph(g)

Then its Hamiltonian number is 6.  A Hamiltonian walk is as shown in the following picture.

 

 

 

PS: After being reminded by others, I learned that a method in the following post seems to work, but I don't understand why it works for now. 

it's possible to formulate this as a Travelling Salesman Problem by augmenting the sparse graph into a complete graph by adding edges. These new edges represent shortest paths between any two vertices in the original graph and have weight equal to the path length.

 

It seems that the correctness of this transformation requires rigorous proof.

 

Hello Everyone;

Hope you are fine. I I have make a code but there is error and dsolve comand is working. I also need to plot. Kindly help me. I am waiting kind response. Code is attached.

restart; Cm := 1.0; ENa := 50.0; EK := -77.0; ELeak := -54.387; gNa := 120.0; gK := 36.0; gLeak := .3; II := piecewise(`and`(t >= 10, t <= 40), 10.0, 0.); alpha_m := proc (V) .1*(V+40.0)/(1.0-exp((-1)*(V+40.0)/10.0)) end proc; beta_m := proc (V) 4.0*exp((-1)*(V+65.0)/18.0) end proc; alpha_h := proc (V) 0.7e-1*exp((-1)*(V+65.0)/20.0) end proc; beta_h := proc (V) 1.0/(1.0+exp((-1)*(V+35.0)/10.0)) end proc; alpha_n := proc (V) 0.1e-1*(V+55.0)/(1.0-exp((-1)*(V+55.0)/10.0)) end proc; beta_n := proc (V) .125*exp((-1)*(V+65.0)/80.0) end proc; eq1 := diff(V(t), t) = (II-gNa*m(t)^3*h(t)*(V(t)-ENa)-gK*n(t)^4*(V(t)-EK)-gLeak*(V(t)-ELeak))/Cm; eq2 := diff(m(t), t) = alpha_m(V(t))*(1-m(t))-beta_m(V(t))*m(t); eq3 := diff(h(t), t) = alpha_h(V(t))*(1-h(t))-beta_h(V(t))*h(t); eq4 := diff(n(t), t) = alpha_n(V(t))*(1-n(t))-beta_n(V(t))*n(t); ics := {V(0) = -65, h(0) = .6, m(0) = 0.5e-1, n(0) = .32}

1.0

 

50.0

 

-77.0

 

-54.387

 

120.0

 

36.0

 

.3

 

20

 

proc (V) .1*(V+40.0)/(1.0-exp((-1)*(V+40.0)/10.0)) end proc

 

proc (V) 4.0*exp((-1)*(V+65.0)/18.0) end proc

 

proc (V) 0.7e-1*exp((-1)*(V+65.0)/20.0) end proc

 

proc (V) 1.0/(1.0+exp((-1)*(V+35.0)/10.0)) end proc

 

proc (V) 0.1e-1*(V+55.0)/(1.0-exp((-1)*(V+55.0)/10.0)) end proc

 

proc (V) .125*exp((-1)*(V+65.0)/80.0) end proc

 

diff(V(t), t) = 3.683900000-120.0000000*m(t)^3*h(t)*(V(t)-50.0)-36.00000000*n(t)^4*(V(t)+77.0)-.3000000000*V(t)

 

diff(m(t), t) = .1*(V(t)+40.0)*(1-m(t))/(1.0-exp(-.1000000000*V(t)-4.000000000))-4.0*exp(-0.5555555556e-1*V(t)-3.611111111)*m(t)

 

diff(h(t), t) = 0.7e-1*exp(-0.5000000000e-1*V(t)-3.250000000)*(1-h(t))-1.0*h(t)/(1.0+exp(-.1000000000*V(t)-3.500000000))

 

diff(n(t), t) = 0.1e-1*(V(t)+55.0)*(1-n(t))/(1.0-exp(-.1000000000*V(t)-5.500000000))-.125*exp(-0.1250000000e-1*V(t)-.8125000000)*n(t)

 

{V(0) = -65, h(0) = .6, m(0) = 0.5e-1, n(0) = .32}

(1)

sol := dsolve({eq1, eq2, eq3, eq4, ics})

Error, (in dsolve) invalid input: solve expects its 1st argument, eqs, to be of type {`and`, `not`, `or`, algebraic, relation(algebraic), ({list, set})({`and`, `not`, `or`, algebraic, relation(algebraic)})}, but received {{V(0) = -65, h(0) = 3/5, m(0) = 1/20, n(0) = 8/25}}

 

NULL

Download Question1.mw

Thanks

I would like to collect in derivatives of a function(s) in a worksheet where I have the Physics package loaded but It does not want to do it. When I bring the expression to a blank worksheet it does everything just fine. Am I missing something small? Or is there additional commands/options I need to input? 

Thoughts?

CollectDiff.mw

The highly oscillatory integrand is: 

(sin(x + sqrt(x)) + x*BesselJ(0, x^2))/(1 + x): # int(%, x = 0 .. infinity, numeric); # Note that the upper limit of `x` is NOT finite.

Unfortunately, Maple still cannot return a result in a few minutes. For instance, 

restart;
infolevel[`evalf/int`] := 1:

smartplot((sin(x+sqrt(x))+x*BesselJ(0, x^2))/(1+x))

 

timelimit(0.1e3, evalf(Int((sin(x+sqrt(x))+x*BesselJ(0, x^2))/(1+x), x = 0 .. infinity)))

Control: Entering NAGInt

trying d01amc (nag_1d_quad_inf)
Control: d01amc failed
evalf/int/control: NAG failed result = result
evalf/int/improper: integrating on interval 0 .. infinity
evalf/int/improper: applying transformation x = 1/x
evalf/int/improper: interval is 0 .. 1 for the integrand:

                        /     (1/2)\            /    2\
                     sin\x + x     / + x BesselJ\0, x /
                     ----------------------------------
                                   1 + x               

and interval is 0 .. 1 for the integrand:

                                                /   1 \
                                         BesselJ|0, --|
                        /       (1/2)\          |    2|
                        |1   /1\     |          \   x /
                     sin|- + |-|     | + --------------
                        \x   \x/     /         x       
                     ----------------------------------
                                 /    1\  2            
                                 |1 + -| x             
                                 \    x/               

Control: Entering NAGInt
Control: trying d01ajc (nag_1d_quad_gen)
Control: d01ajc failed
evalf/int/control: NAG failed result = result

evalf/int/control: singularity at left end-point
evalf/int/transform: series contains {x^(1/2), x^(3/2), x^(5/2), x^(7/2), x^(9/2), x^(11/2), x^(13/2), x^(15/2), x^(17/2), x^(19/2), x^(21/2), x^(23/2), x^(25/2)}

evalf/int/singleft: applying transformation x = x^2
evalf/int/singleft: interval is 0 .. 1. for the integrand:

                  /   / 2            \    2        /    4\\  
                2 \sin\x  + csgn(x) x/ + x  BesselJ\0, x // x
                ---------------------------------------------
                                        2                    
                                   1 + x                     

evalf/int/control: Applying simplify/ln, integrand is 2*(sin(x^2+x)+x^2*BesselJ(0,x^4))/(1+x^2)*x
evalf/int/CreateProc: Trying easyproc
evalf/int/CreateProc: Trying makeproc
evalf/int/ccquad: n = 2 integral estimate = .7758263476953
                    n = 6 integral estimate = .8097413335347
evalf/int/ccquad: n = 18 integral estimate = .8097470386638
                                  error = .8097470386638e-11
From ccquad, result = .8097470386638 integrand evals = 19 error = .8097470386638e-11
Control: Entering NAGInt
Control: trying d01ajc (nag_1d_quad_gen)
Control: d01ajc failed
evalf/int/control: NAG failed result = result

evalf/int/control: singularity at left end-point

evalf/int/transform: series contains {1/x^(3/2), x^(1/2), cos(1/x^2+1/4*Pi), sin((x+x^(1/2))/x^(3/2)), sin(1/4*(4+Pi*x^2)/x^2)}
evalf/int/singleft: applying transformation x = x^2
evalf/int/singleft: interval is 0 .. 1. for the integrand:

                   /   /        /1\  \                    \
                   |   |1 + csgn|-| x|                    |
                   |   |        \x/  |  2          /   1 \|
                 2 |sin|-------------| x  + BesselJ|0, --||
                   |   |      2      |             |    4||
                   \   \     x       /             \   x //
                 ------------------------------------------
                                 3 /     2\                
                                x  \1 + x /                

evalf/int/control: Applying simplify/ln, integrand is 2*(sin((1+x)/x^2)*x^2+BesselJ(0,1/x^4))/x^3/(1+x^2)
evalf/int/control: Applying simplify/trig, integrand is (2*sin((1+x)/x^2)*x^2+2*BesselJ(0,1/x^4))/(x^3+x^5)
evalf/int/control: singularity at left end-point

evalf/int/transform: series contains {cos(1/x^4+1/4*Pi), sin((1+x)/x^2), sin(1/4*(4+Pi*x^4)/x^4)}
evalf/int/transform: no transform found
evalf/int/series: integrating on 0 .. .2493468135214 the series:

       2 (%2)     2 (%2) x   /2 (%2)      \  3   /  2 (%2)      \  5   
      --------- - -------- + |------- - %3| x  + |- ------- + %3| x    
        (1/2)       (1/2)    |  (1/2)     |      |    (1/2)     |      
      Pi      x   Pi         \Pi          /      \  Pi          /      
                                                                       
           /       2 (%2)      \  7   /     2 (%2)      \  9           
         + |- %3 + ------- - %4| x  + |%3 - ------- + %4| x            
           |         (1/2)     |      |       (1/2)     |              
           \       Pi          /      \     Pi          /              
                                                                       
                                                                       
           /2 (%2)           \  11   /          2 (%2) \  13           
         + |------- - %4 - %5| x   + |%4 + %5 - -------| x             
           |  (1/2)          |       |            (1/2)|               
           \Pi               /       \          Pi     /               
                                                                       
           /       2 (%2)      \  15   /     2 (%2)      \  17    / 19\
         + |- %5 + ------- + %6| x   + |%5 - ------- - %6| x   + O\x  /
           |         (1/2)     |       |       (1/2)     |             
           \       Pi          /       \     Pi          /             
                                                                       
                                                                       
                      /        4\                                      
             (1/2)    |4 + Pi x |                                      
      %1 := 2      sin|---------|                                      
                      |     4   |                                      
                      \  4 x    /                                      
                    /1 + x\   (1/2)                                    
      %2 := %1 + sin|-----| Pi                                         
                    |  2  |                                            
                    \ x   /                                            
             (1/2)    /1    1   \                                      
            2      cos|-- + - Pi|                                      
                      | 4   4   |                                      
                      \x        /                                      
      %3 := ---------------------                                      
                      (1/2)                                            
                  4 Pi                                                 
                        /        4\                                    
               (1/2)    |4 + Pi x |                                    
            9 2      sin|---------|                                    
                        |     4   |                                    
                        \  4 x    /                                    
      %4 := -----------------------                                    
                       (1/2)                                           
                  64 Pi                                                
                (1/2)    /1    1   \                                   
            53 2      cos|-- + - Pi|                                   
                         | 4   4   |                                   
                         \x        /                                   
      %5 := ------------------------                                   
                        (1/2)                                          
                  512 Pi                                               
                           /        4\                                 
                  (1/2)    |4 + Pi x |                                 
            1371 2      sin|---------|                                 
                           |     4   |                                 
                           \  4 x    /                                 
      %6 := --------------------------                                 
                          (1/2)                                        
                  16384 Pi                                             

evalf/int/CreateProc: Trying easyproc
evalf/int/CreateProc: Trying makeproc

evalf/int/CreateProc: Trying procmake
evalf/int/control: applying double-exponential method
evalhf mode unsuccessful -- retry in software floats
evalf/int/quadexp: applying double-exponential method

Error, (in tools/sign) time expired

 

time() =

3999.500

(1)

 =

%?

Download oscillatoryInt.mws

I tried to specify another method (as described in evalf/int), but it seems that this doesn't work. Any ideas?

For example, if I want to replace all "x" in t:={x1,x2,x3...x100} to get t:={y1,y2,y3...y100}, how can maple do this, please? Thanks a lot! 

The answers from the book dont make any sense after using their solution. Its not producing the expected results. 

This is the translation by the way: "A battery that has a voltage U, is in series with a resistor R, and a condenser with capacity C. The current strength on a given time "t" in this circuit is given by i=i(t)=U/R*e^-(t/R*C). Determine R and C based on the data given in table 5.6, the current is U=100V."

Greetings,

The Function


 

restart

U := 100

100

(1)

R := 4900

4900

(2)

C := 20*(1/1000)

1/50

(3)

"v(t):=U/(R)*(e)^(-(t/(R*C)))"

proc (t) options operator, arrow, function_assign; U*exp(-t/(R*C))/R end proc

(4)

v(.1)

0.2038734923e-1

(5)

NULL

data := LinearAlgebra:-Transpose(`<,>`(`<|>`(.1, .2, .3, .4, .5), `<|>`(7.36, 2.7, .99, .37, .13)))

Matrix(%id = 18446746712187741238)

(6)

plot(data, style = point)

 

X := data[() .. (), 1]; Y := data[() .. (), 2]

Vector(5, {(1) = .1, (2) = .2, (3) = .3, (4) = .4, (5) = .5})

 

Vector[column](%id = 18446746712187761598)

(7)

sumX := add(X); sumY := add(Y); sumX2 := add(x^2, `in`(x, X)); sumXY := X.Y

1.5

 

11.55

 

.55

 

1.78600000000000003

(8)

eq1 := numelems(X)*a+b*sumX = sumY; eq2 := a*sumX+b*sumX2 = sumXY

5*a+1.5*b = 11.55

 

1.5*a+.55*b = 1.78600000000000003

(9)

solve({eq1, eq2}, {a, b})

{a = 7.347000000, b = -16.79000000}

(10)

``

Download Mapleprimes_Question_Book_2_Paragraph_5.12_Question_5.mw

Good day! 

I have been wrestling with what appears to be a simple problem, but with no success and so, I thought I would reach out for support. 

Consider a two-dimensional strip of any given width, x, and depth, y.

I wish to maximize the quantity of strips that can fit inside a larger two-dimensional surface of any given width, X, and depth, Y. Overhanging is not permitted and all smaller strips must lie within the interior of the larger surface. 

I'm looking for a solution method that can calculate the best configuration necessary to fit the maximum number of smaller strips in the interior of the larger rectangle. Can someone suggest a way (if possible) to solve for this?

Thanks for reading.

diff(f(x), x) = a-a/((1+a*x)*(1/(1+a*x))^a)-a*f(x) where a is a constant and an initial condition f(0)= b is known Thank you.

Hello,

How do I isolate the variable ng in the following expression:

rho := `&rho;g`*ng + `&rho;p`*np + `&rho;w`*nw;
B := np/Kp + nw/Kw + ng/Kg;

C := (B/rho)^(1/2);

As you can see, I am running the isolate command, but it is not including the variable C, or it returns the wrong result.

isolate(((np/Kp + nw/Kw + ng/Kg)/(`&rho;g`*ng + `&rho;p`*np + `&rho;w`*nw))^(1/2), ng);
                               ( Kp nw + Kw np) Kg
                   ng = -     -----------------

                                          Kw Kp       

 

isolate(C=((np/Kp + nw/Kw + ng/Kg)/(`&rho;g`*ng + `&rho;p`*np + `&rho;w`*nw))^(1/2), ng);
                             0 = 0

Thanks.                

I think some form of simplify() would do but I am not sure how.

See the following script for more details:

restart

#Define the assumptions ex-ante (variances as real and positive, correlations in between -1 and +1 and so on...) - or Maple wouldn't know

assume(`#msub(mi("mu",fontstyle = "normal"),mi("1"))`::real, `#msub(mi("mu",fontstyle = "normal"),mi("2"))`::real, `#msub(mi("mu",fontstyle = "normal"),mi("3"))`::real, `#msub(mi("lambda",fontstyle = "normal"),mi("1"))`::real, `#msub(mi("lambda",fontstyle = "normal"),mi("2"))`::real, `#msub(mi("lambda",fontstyle = "normal"),mi("3"))`::real, `#msub(mi("sigma",fontstyle = "normal"),mi("epsilon1"))`::real, `#msub(mi("sigma",fontstyle = "normal"),mi("epsilon2"))`::real, (`#msub(mi("nu",fontstyle = "normal"),mi("0"))`[1])::real, (`#msub(mi("nu",fontstyle = "normal"),mi("0"))`[2])::real, (`#msub(mi("rho",fontstyle = "normal"),mi("u"))`[1, 2])::real, (`#msub(mi("rho",fontstyle = "normal"),mi("u"))`[1, 3])::real, (`#msub(mi("rho",fontstyle = "normal"),mi("u"))`[2, 3])::real, (`#msub(mi("rho",fontstyle = "normal"),mi("v"))`[1, 2])::real, (`#msub(mi("sigma",fontstyle = "normal"),mi("u"))`[1])::real, (`#msub(mi("sigma",fontstyle = "normal"),mi("u"))`[2])::real, (`#msub(mi("sigma",fontstyle = "normal"),mi("u"))`[3])::real, (`#msub(mi("sigma",fontstyle = "normal"),mi("v"))`[1])::real, (`#msub(mi("sigma",fontstyle = "normal"),mi("v"))`[2])::real)
 

assume(0 <= `#msub(mi("mu",fontstyle = "normal"),mi("1"))`, 0 <= `#msub(mi("mu",fontstyle = "normal"),mi("2"))`, 0 <= `#msub(mi("mu",fontstyle = "normal"),mi("3"))`, 0 <= `#msub(mi("lambda",fontstyle = "normal"),mi("1"))`, 0 <= `#msub(mi("lambda",fontstyle = "normal"),mi("2"))`, 0 <= `#msub(mi("lambda",fontstyle = "normal"),mi("3"))`, 0 <= `#msub(mi("sigma",fontstyle = "normal"),mi("epsilon1"))`, 0 <= `#msub(mi("sigma",fontstyle = "normal"),mi("epsilon2"))`, 0 <= `#msub(mi("nu",fontstyle = "normal"),mi("0"))`[1], 0 <= `#msub(mi("nu",fontstyle = "normal"),mi("0"))`[2], -1 <= `#msub(mi("rho",fontstyle = "normal"),mi("u"))`[1, 2] and `#msub(mi("rho",fontstyle = "normal"),mi("u"))`[1, 2] <= 1, -1 <= `#msub(mi("rho",fontstyle = "normal"),mi("u"))`[1, 3] and `#msub(mi("rho",fontstyle = "normal"),mi("u"))`[1, 3] <= 1, -1 <= `#msub(mi("rho",fontstyle = "normal"),mi("u"))`[2, 3] and `#msub(mi("rho",fontstyle = "normal"),mi("u"))`[2, 3] <= 1, -1 <= `#msub(mi("rho",fontstyle = "normal"),mi("v"))`[1, 2] and `#msub(mi("rho",fontstyle = "normal"),mi("v"))`[1, 2] <= 1, 0 <= `#msub(mi("sigma",fontstyle = "normal"),mi("u"))`[1], 0 <= `#msub(mi("sigma",fontstyle = "normal"),mi("u"))`[2], 0 <= `#msub(mi("sigma",fontstyle = "normal"),mi("u"))`[3], 0 <= `#msub(mi("sigma",fontstyle = "normal"),mi("v"))`[1], 0 <= `#msub(mi("sigma",fontstyle = "normal"),mi("v"))`[2])

NULL

t__1 := (`&sigma;__v`[2]^2*(`&rho;__v`[1, 2]^2-1)-`&sigma;__&epsilon;2`^2)*`&sigma;__v`[1]^2/((`&sigma;__v`[2]^2*(`&rho;__v`[1, 2]^2-1)-`&sigma;__&epsilon;2`^2)*`&sigma;__v`[1]^2-`&sigma;__&epsilon;1`^2*(`&sigma;__&epsilon;2`^2+`&sigma;__v`[2]^2))

t__2 := -`&sigma;__v`[1]*`&rho;__v`[1, 2]*`&sigma;__v`[2]*`&sigma;__&epsilon;1`^2/((`&sigma;__v`[2]^2*(`&rho;__v`[1, 2]^2-1)-`&sigma;__&epsilon;2`^2)*`&sigma;__v`[1]^2-`&sigma;__&epsilon;1`^2*(`&sigma;__&epsilon;2`^2+`&sigma;__v`[2]^2))

t__3 := (`&sigma;__v`[1]*`&rho;__v`[1, 2]*`&sigma;__v`[2]*`&sigma;__&epsilon;1`^2*`&nu;__0`[2]-`&nu;__0`[1]*`&sigma;__&epsilon;1`^2*(`&sigma;__&epsilon;2`^2+`&sigma;__v`[2]^2))/((`&sigma;__v`[2]^2*(`&rho;__v`[1, 2]^2-1)-`&sigma;__&epsilon;2`^2)*`&sigma;__v`[1]^2-`&sigma;__&epsilon;1`^2*(`&sigma;__&epsilon;2`^2+`&sigma;__v`[2]^2))


See for example that they share the same denominator...
# I want Maple to automatically/smartly choose the most compact way...e.g., (i) t2=t1+... or (ii) t2=t3*... (i) is equivalent to (ii) but I want Maple to pick (ii) if more compact than (i)
# I have 9 expressions like t1,t2,t3 and I want Maple to re-write them as function of each other smartly

 

NULL

``

Download rearrangingterms.mw

It must be something similar to this https://www.mapleprimes.com/maplesoftblog/201455-Rearranging-The-expression-Of-Equations, but my case is slighty different.

In certain tasks, I need to find all accurate positive (not just nonnegative) roots that exist of some multivariate polynomials like: 

nsd := 16*a*b*c*(9 + a^2 + b^2 + c^2)*(b*c + a*(b + c) + 3*(a + b + c)) - (3 + a + b + c)^2*(a*b + 3*c)*(3*b + a*c)*(3*a + b*c): # assume((a, b, c) >~ 0);

According to fsolve/details, for one general equation, the fsolve command only computes "a single real root", so it is inadequate to tackle this question. But if I use the solve command with floating-point values, the computation cannot finish in ten minutes instead! (Maybe a longer time will suffice, yet this is rather unacceptable.) 

restart;

"Digits+=Digits:"

#assume((a, b, c) >~ 0);
nsd := 16*a*b*c*(a^2 + b^2 + c^2 + 9)*(a*(b + c) + 3*(a + b + c) + b*c) - (a + b + c + 3)^2*(a*b + 3*c)*(a*c + 3*b)*(b*c + 3*a):

fsolve({`~`[`>`](a, b, c, ` $`, 0), nsd = 0}, fulldigits)

Error, (in fsolve) expecting an equation or set or list of equations, but received inequalities {16*a*b*c*(a^2+b^2+c^2+9)*(a*(b+c)+3*a+3*b+3*c+b*c)-(a+b+c+3)^2*(a*b+3*c)*(a*c+3*b)*(b*c+3*a) = 0, 0 < a, 0 < b, 0 < c}

 

fsolve([`$`(nsd = 0, 3)], fulldigits, {`~`[`=`](a, b, c, ` $`, 0 .. infinity)}, avoid = {{a = 0}, {b = 0}, {c = 0}})eval(nsd, %)

{a = 3.0000000005817604971, b = 3.0000000004676996798, c = 3.0000000004610312655}

(1)

timelimit(0.6e3, RealDomain[solve]([`~`[`>`](a, b, c, ` $`, 0), nsd = 0.], allsolutions))

Error, (in gcd/gcdchrem1) time expired

 

timelimit(0.6e3, `assuming`([solve(nsd = 0., useassumptions, allsolutions)], [`~`[`>`](a, b, c, ` $`, 0)]))

Error, (in modp1/DistDeg) time expired

 

""(* However, there are (at least) five positive solutions to 'nsd = 0'. *)" map2(eval,nsd,[{a=1,b=1,c=1},{a=3,b=3,c=3},{a=3,b=3,c=9},{a=3,b=9,c=3},{a=9,b=3,c=3}])"

[0, 0, 0, 0, 0]

(2)

time()

11127.031

(3)

NULL


Download solve_numerically.mws

Is there any workaround to obtain those (finitely many) positive solutions completely?

Dear all:

    I am using maple2022 to learn Fourier Series package - Maple Application Center (maplesoft.com) . the author provide the package here:

cgi.math.muni.cz/kriz/xsrot/fourierseries/  I use the lastest version: Package FourierTrigSeries version 0.41 

there is no .mla so I do not know how to use this package.(the package is a little old). 

please enlight me if you know how to install this old package.

but the author provide the code inside fourierseries-structs.mws 

here is what I do:

1. first delete some lines which is not useful(which I shared in the attachment as FourierTrigSeries.mw)

and remain everything inside module and save as .mw (maybe the orginal .mws is a old version of maple files)

2. export as .FourierTrigSeries.mpl (also attached)

3. use the examples.mws (the code also from author)

I got error as:

the package can be recognized, but the first line wil give some error which is out of my knowledge field.

everything mentioned above is here, including the original author's files.

fouriertrigseries_0_41en_mapleprime.zip

Could you please have a look. your idea is valuable to me.

PS: this package is not available The Fourier Series package for Maple - Maple Application Center (maplesoft.com) whenI try to learn  Teaching Fourier Series with Maple II 

if anyone keep it before, please share it.

thanks for your help.

rockyicer 

First 80 81 82 83 84 85 86 Last Page 82 of 2097