Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

How I can solve these time delay  differential equations?

please see attatched files.

Best

Doc191.pdf

ny.mw

 


 

restart; d[1] := 1; d[2] := 4; d[3] := 1; r[1] := 1; r[2] := 1; r[3] := 1; r[4] := .5; a[11] := .5; a[12] := 3; a[21] := 2; a[22] := .8; a[23] := 1; a[32] := .5; a[33] := .9; tau := .3

diff(u(t, x), t) = d[1]*(diff(u(t, x), x, x))+u(t, x)*{r[1]-a[11]*u(t, x)-a[12]*v(t, x)}

diff(u(t, x), t) = diff(diff(u(t, x), x), x)+u(t, x)*{1-.5*u(t, x)-3*v(t, x)}

(1)

diff(v(t, x), t) = d[2]*(diff(v(t, x), x, x))+v(t, x)*{r[2]+a[21]*u(t-tau, x)-a[22]*v(t, x)-a[23]*w(t-tau, x)}

diff(v(t, x), t) = 4*(diff(diff(v(t, x), x), x))+v(t, x)*{1+2*u(t-.3, x)-.8*v(t, x)-w(t-.3, x)}

(2)

diff(w(t, x), t) = d[3]*(diff(w(t, x), x, x))+w(t, x)*{r[3]+a[32]*v(t, x)-a[33]*w(t, x)}

diff(w(t, x), t) = diff(diff(w(t, x), x), x)+w(t, x)*{1+.5*v(t, x)-.9*w(t, x)}

(3)

0 < x and x < Pi, t > 0

0 < x and x < Pi, 0 < t

(4)

diff(u(t, x), x) = 0, diff(v(t, x), x) = 0, diff(w(t, x), x) = 0, x = 0, x = Pi, t >= 0

diff(u(t, x), x) = 0, diff(v(t, x), x) = 0, diff(w(t, x), x) = 0, x = 0, x = Pi, 0 <= t

(5)

u(t, x) > 0, v(t, x) > 0, w(t, x) > 0, `in`(t, x, `&x`([-tau, 0], [0, Pi]))

0 < u(t, x), 0 < v(t, x), 0 < w(t, x), `in`(t, x, [-.3, 0]*[0, Pi])

(6)

``

``


 

Download ny.mw


I have a complicated expression which includes RootOf( a quadratic ) but holds for all x what i'd like to do is turn it into a polynomial in x[1], x[2], x[3] so i can start looking at the monomial coefficients.

k[a1]*((x[1]+x[3])*k[d1]+C[T]*k[m])*(R[b]-x[1]-2*x[2])/((R[b]+R[m]-x[1]-2*x[2]-x[3])*k[a1]+k[m])-k[d1]*x[1]-k[a2]*x[1]*(R[b]-x[1]-2*x[2])+2*k[d2]*x[2] = (-R[b]*k[a2]+2*k[a2]*x[1]+2*k[a2]*x[2])*(k[a1]*kh[m]*((x[1]+x[3])*k[d1]+C[T]*k[m])*(R[b]+R[m]-Rh[m]-x[1]-2*x[2])/(k[m]*((R[b]+R[m]-x[1]-2*x[2]-x[3])*k[a1]*kh[m]/k[m]+kh[m]))-k[d1]*x[1]-kh[a2]*x[1]*(R[b]+R[m]-Rh[m]-x[1]-2*x[2])+2*kh[d2]*x[2])/(2*kh[a2]*RootOf(kh[a2]*_Z^2+(-R[b]*kh[a2]-R[m]*kh[a2]+Rh[m]*kh[a2]+2*kh[a2]*x[2])*_Z-2*k[a2]*x[1]*x[2]-k[a2]*x[1]^2+k[a2]*x[1]*R[b]+2*kh[d2]*x[2]-2*k[d2]*x[2])-R[b]*kh[a2]-R[m]*kh[a2]+Rh[m]*kh[a2]+2*kh[a2]*x[2])+(-2*kh[a2]*RootOf(kh[a2]*_Z^2+(-R[b]*kh[a2]-R[m]*kh[a2]+Rh[m]*kh[a2]+2*kh[a2]*x[2])*_Z-2*k[a2]*x[1]*x[2]-k[a2]*x[1]^2+k[a2]*x[1]*R[b]+2*kh[d2]*x[2]-2*k[d2]*x[2])+2*k[a2]*x[1]+2*k[d2]-2*kh[d2])*(kh[a2]*x[1]*(R[b]+R[m]-Rh[m]-x[1]-2*x[2])-2*kh[d2]*x[2])/(2*kh[a2]*RootOf(kh[a2]*_Z^2+(-R[b]*kh[a2]-R[m]*kh[a2]+Rh[m]*kh[a2]+2*kh[a2]*x[2])*_Z-2*k[a2]*x[1]*x[2]-k[a2]*x[1]^2+k[a2]*x[1]*R[b]+2*kh[d2]*x[2]-2*k[d2]*x[2])-R[b]*kh[a2]-R[m]*kh[a2]+Rh[m]*kh[a2]+2*kh[a2]*x[2])

If this were something like q(x)=p1(x)/sqrt(p2(x)) where p1 and p2 are polynomials and q is a quotient- this would be as simple as making sqrt(p2(x)) the subject and squaring both sides, and then movinbg everything onto one and multiplying out denominators. However RootOf is something I'm not used to manipulating.

Is there anyway of converting this expression to a polynomial using maple commands?

Hello people in mapleprimes,

I installed maple 2018 Japanese version.
And, with solve(x^2-1,x), its solution is expressed as _EXPSEQ(1, -1)

I know this expression is an internal represantation.
How can I have maple answer as 1, -1?

Thanks in advance.

Addition: my pc is mac osx 10.13.6.
 

 

 

After calculations the integral contains infinity. what it resembles? Is it correct  answer?  Please check the file maple
 

restart

with(DifferentialGeometry):with(JetCalculus):NULL``

DGsetup([x, t], [u], E, 1):

``

 

 
E > 

(-3*t*u[1]^2*u[2]-t*u[2]^3+x*u[1]^3+3*x*u[1]*u[2]^2)*((-2*u[]^2+1)*(-u[1, 1]+u[2, 2])+2*u[]*(-u[1]^2+u[2]^2))/((u[1]-u[2])^3*(u[1]+u[2])^3)

(-3*t*u[1]^2*u[2]-t*u[2]^3+x*u[1]^3+3*x*u[1]*u[2]^2)*((-2*u[]^2+1)*(-u[1, 1]+u[2, 2])+2*u[]*(-u[1]^2+u[2]^2))/((u[1]-u[2])^3*(u[1]+u[2])^3)

(1.1)
E > 

``

E > 

A := evalDG((-3*t*u[1]^2*u[2]-t*u[2]^3+x*u[1]^3+3*x*u[1]*u[2]^2)*((-2*u[]^2+1)*(-u[1, 1]+u[2, 2])+2*u[]*(-u[1]^2+u[2]^2))*`&w`(Dx, Dt)/((u[1]-u[2])^3*(u[1]+u[2])^3))

_DG([["biform", E, [2, 0]], [[[1, 2], -(3*t*u[1]^2*u[2]+t*u[2]^3-x*u[1]^3-3*x*u[1]*u[2]^2)*(2*u[]^2*u[1, 1]-2*u[]^2*u[2, 2]-2*u[]*u[1]^2+2*u[]*u[2]^2-u[1, 1]+u[2, 2])/((u[1]-u[2])^3*(u[1]+u[2])^3)]]])

(1.2)
E > 

simplify(HorizontalHomotopy(A))

_DG([["biform", E, [1, 0]], [[[1], -t*(int(-infinity*(u[1]+u[2])*(1+(u[2, 2]+u[1, 1, 2]+u[1, 2, 2]+u[2]+u[1, 2])*_z1)*_z1*(u[1]-u[2])*(u[1]^4+u[2]^4)*signum(1, (_z1*t*u[2]^6+(-3*_z1*x*u[1]-u[])*u[2]^5+3*_z1*((2/3)*t*u[1]^2+u[]*(t*u[1, 1]+x*u[1, 2]))*u[2]^4-12*(-(1/6)*_z1*x*u[1]^2+(1/6)*u[]*u[1]+_z1*u[]*(t*u[1, 2]+x*u[1, 1]))*u[1]*u[2]^3+18*_z1*u[1]^2*(-(1/6)*t*u[1]^2+u[]*(t*u[1, 1]+x*u[1, 2]))*u[2]^2-12*u[1]^3*(-(1/12)*_z1*x*u[1]^2-(1/4)*u[]*u[1]+_z1*u[]*(t*u[1, 2]+x*u[1, 1]))*u[2]+3*_z1*u[]*u[1]^4*(t*u[1, 1]+x*u[1, 2]))/(_z1^2*(u[1]-u[2])^4*(u[1]+u[2])^4))+infinity*(u[1]+u[2])*_z1*(1+(u[1, 1, 2]+u[1, 2, 2]+u[1]+u[1, 1]+u[1, 2])*_z1)*(u[1]-u[2])*(u[1]^4+u[2]^4)*signum(1, (_z1*x*u[1]^6+(-3*_z1*t*u[2]-u[])*u[1]^5+3*_z1*((2/3)*x*u[2]^2+u[]*(t*u[1, 2]+x*u[2, 2]))*u[1]^4-12*u[2]*(-(1/6)*t*_z1*u[2]^2+(1/6)*u[]*u[2]+_z1*u[]*(t*u[2, 2]+x*u[1, 2]))*u[1]^3+18*_z1*u[2]^2*(-(1/6)*x*u[2]^2+u[]*(t*u[1, 2]+x*u[2, 2]))*u[1]^2-12*(-(1/12)*t*_z1*u[2]^2-(1/4)*u[]*u[2]+_z1*u[]*(t*u[2, 2]+x*u[1, 2]))*u[2]^3*u[1]+3*_z1*u[]*u[2]^4*(t*u[1, 2]+x*u[2, 2]))/(_z1^2*(u[1]-u[2])^4*(u[1]+u[2])^4))+6*(u[]*(u[1]^2-u[2]^2+u[]*(-u[1, 1]+u[2, 2]))*_z1^2-(1/2)*u[2, 2]+(1/2)*u[1, 1])*(t*u[1]^2*u[2]+(1/3)*t*u[2]^3-(1/3)*x*u[1]^3-x*u[1]*u[2]^2), _z1 = 0 .. 1))/((u[1]-u[2])^3*(u[1]+u[2])^3)-signum((t*u[2]^6+(-3*x*u[1]-u[])*u[2]^5+(2*t*u[1]^2+3*u[]*(t*u[1, 1]+x*u[1, 2]))*u[2]^4+(2*x*u[1]^3-2*u[]*u[1]^2-12*u[]*(t*u[1, 2]+x*u[1, 1])*u[1])*u[2]^3+18*(-(1/6)*t*u[1]^2+u[]*(t*u[1, 1]+x*u[1, 2]))*u[1]^2*u[2]^2+(x*u[1]^5+3*u[]*u[1]^4-12*u[]*(t*u[1, 2]+x*u[1, 1])*u[1]^3)*u[2]+3*u[]*u[1]^4*(t*u[1, 1]+x*u[1, 2]))/((u[1]-u[2])^4*(u[1]+u[2])^4))*infinity], [[2], x*(int(-infinity*(u[1]+u[2])*(1+(u[2, 2]+u[1, 1, 2]+u[1, 2, 2]+u[2]+u[1, 2])*_z1)*_z1*(u[1]-u[2])*(u[1]^4+u[2]^4)*signum(1, (_z1*t*u[2]^6+(-3*_z1*x*u[1]-u[])*u[2]^5+3*_z1*((2/3)*t*u[1]^2+u[]*(t*u[1, 1]+x*u[1, 2]))*u[2]^4-12*(-(1/6)*_z1*x*u[1]^2+(1/6)*u[]*u[1]+_z1*u[]*(t*u[1, 2]+x*u[1, 1]))*u[1]*u[2]^3+18*_z1*u[1]^2*(-(1/6)*t*u[1]^2+u[]*(t*u[1, 1]+x*u[1, 2]))*u[2]^2-12*u[1]^3*(-(1/12)*_z1*x*u[1]^2-(1/4)*u[]*u[1]+_z1*u[]*(t*u[1, 2]+x*u[1, 1]))*u[2]+3*_z1*u[]*u[1]^4*(t*u[1, 1]+x*u[1, 2]))/(_z1^2*(u[1]-u[2])^4*(u[1]+u[2])^4))+infinity*(u[1]+u[2])*_z1*(1+(u[1, 1, 2]+u[1, 2, 2]+u[1]+u[1, 1]+u[1, 2])*_z1)*(u[1]-u[2])*(u[1]^4+u[2]^4)*signum(1, (_z1*x*u[1]^6+(-3*_z1*t*u[2]-u[])*u[1]^5+3*_z1*((2/3)*x*u[2]^2+u[]*(t*u[1, 2]+x*u[2, 2]))*u[1]^4-12*u[2]*(-(1/6)*t*_z1*u[2]^2+(1/6)*u[]*u[2]+_z1*u[]*(t*u[2, 2]+x*u[1, 2]))*u[1]^3+18*_z1*u[2]^2*(-(1/6)*x*u[2]^2+u[]*(t*u[1, 2]+x*u[2, 2]))*u[1]^2-12*(-(1/12)*t*_z1*u[2]^2-(1/4)*u[]*u[2]+_z1*u[]*(t*u[2, 2]+x*u[1, 2]))*u[2]^3*u[1]+3*_z1*u[]*u[2]^4*(t*u[1, 2]+x*u[2, 2]))/(_z1^2*(u[1]-u[2])^4*(u[1]+u[2])^4))+6*(u[]*(u[1]^2-u[2]^2+u[]*(-u[1, 1]+u[2, 2]))*_z1^2-(1/2)*u[2, 2]+(1/2)*u[1, 1])*(t*u[1]^2*u[2]+(1/3)*t*u[2]^3-(1/3)*x*u[1]^3-x*u[1]*u[2]^2), _z1 = 0 .. 1))/((u[1]-u[2])^3*(u[1]+u[2])^3)-signum((x*u[1]^6+(-3*t*u[2]-u[])*u[1]^5+(2*x*u[2]^2+3*u[]*(t*u[1, 2]+x*u[2, 2]))*u[1]^4+(2*t*u[2]^3-2*u[]*u[2]^2-12*u[]*(t*u[2, 2]+x*u[1, 2])*u[2])*u[1]^3+18*(-(1/6)*x*u[2]^2+u[]*(t*u[1, 2]+x*u[2, 2]))*u[2]^2*u[1]^2+(t*u[2]^5+3*u[]*u[2]^4-12*u[]*(t*u[2, 2]+x*u[1, 2])*u[2]^3)*u[1]+3*u[]*(t*u[1, 2]+x*u[2, 2])*u[2]^4)/((u[1]-u[2])^4*(u[1]+u[2])^4))*infinity]]])

(1.3)
E > 

``

``

E > 

``

E > 

``


 

Download maple1.mw

1.mw maple1.pdf

Hi everybody, I have some programming difficulties on the maple, this is the algorithm and link article, hope everyone help me, please, thank you so much!!

Algorithm:

1: for Search every non-singular m × m matrix T with a few of XORs over F2. do

2: Find the minimum polynomial f(x) of T.

3: if f(x) = g(x)t(x) satisfying g(x) 6= 1, t(x) 6= 1 and g(x) is relatively prime with t(x). then

4: Find ri1(x), ri2 satisfying g(x)ri1 +t(x)ri2 = 1. Let pi1=g(x)ri1, pi2=t(x)ri2 = 1 . Sore pi1 and pi2.

5: end if

6: end for

7: for i from 1 to k. do

8: for Search a over F2[x]/(fi(x)). do

9: for Search b over F2[x]/(fi(x)). do

10: c = a + pi1(x), d = b + pi2.

11: if The circulant orthogonal matrix (a, b, c, d) is MDS. then

12: Store fi(x) and (a, b, c, d).

13: end if

14: end for

15: end for

16: end for

17: for Search every m × m non-singular matrix T with a few of XORs. do

18: for i from 1 to k. do

19: if fi(T) = 0. then

20: Substitute T into corresponding circulant orthogonal MDS matrix (a, b, c, d). Compute the sum of XORs of (a, b, c, d).

21: end if

22: end for

23: end for

Link: https://eprint.iacr.org/2017/371.pdf

Hi , 

I want to ask if there is any maple code of how to construct wavelet to solve fractional differential eqautions? Or any reference may be help me 

thanks 

Hello everyone! I have just started to using Maple 13. I want to solve complex eauation systems.

When I am working on Maple, If I write simple mathematical calculation and then press right click, the context menu open. However, I want to use solve command. Therefore I wrote an eauation after than press right click the context menu will not open. 

What is the reason of this problem? 

Hi folks,

I've just now installed Maple player, and I find it crashes immediately when I run it:

Exception in thread "Request id 1" java.lang.UnsupportedOperationException: PERPIXEL_TRANSLUCENT translucency is not supported
        at java.awt.Window.setBackground(Window.java:3842)
        at java.awt.Frame.setBackground(Frame.java:988)
        at com.maplesoft.worksheet.application.WmiSplashScreen.<init>(Unknown Source)
        at com.maplesoft.worksheet.player.WmiPlayerStartupStrategy.showSplash(Unknown Source)
        at com.maplesoft.worksheet.application.WmiGenericStartupStrategy.doStartup(Unknown Source)
        at com.maplesoft.worksheet.player.WmiPlayerStartupStrategy.doStartup(Unknown Source)
        at com.maplesoft.application.Maple.doStartup(Unknown Source)
        at com.maplesoft.application.Application.startup(Unknown Source)
        at com.maplesoft.application.ServerProtocol$StartApplicationHandler.processCommand(Unknown Source)
        at com.maplesoft.application.ServerProtocol.executeCommand(Unknown Source)
        at com.maplesoft.application.ServerProtocol.processNextStep(Unknown Source)
        at com.maplesoft.application.ExchangeProtocol.executeProtocol(Unknown Source)
        at com.maplesoft.application.ApplicationManager$Listener.run(Unknown Source)
        at java.lang.Thread.run(Thread.java:748)


The operating system is CentOS 7 (64 bit).   Any idea how I can fix this?

Thanks,

Bryan

How to solve system of convolution equations in maple?

Hi,

I'm trying to solve this system of differential equation, coming from the iterative process of the Elastic Curve's  solution.

The problem is that Maple returns:

risultato12 := NULL

EDIT: i think the problem is related to the non-linear equations in the system.

Any suggestion?

Here is the file

https://1drv.ms/u/s!AuhHGe410qgOm1_PdEDqkO4J1YYp

Hi all

Hope the best for all. 

I have a single product of two sum, where the second sum admits one variable, namely j, from first one.

how can I it via maple?

thanks for any help.

how can write this loop that has written in matlab to maple??
i=1;
for e=T1P1:0.0399:T1P;
    E(i)=e;
    gama1(i,:)=a-atan(e/Rb1);
     i=i+1;
end
 

HELLO

I AM A STUDENT AND WAS LOOKING FOR USING MAPLE2018.

I REQUESTED FOR A MAPLE EVALUATION. MY QUESTIONS ARE:

FOR HOW LONG CAN I USE THIS EVALUATION VERSION?

SECONDLY, WHAT SOFTWARE FACILITIES I WOULD NOT GET WITH THIS EVALUATION VERSION? WHAT ARE THE DIFFERENCES BETWEEN THE PRICED ENTERPRISE VERSION AND MAPLESOFT EVALUATION VERSION?

THIRDLY, WHAT ARE THE DIFFERENCES BETWEEN MAPLESOFT STUDENT VERSION AND THE ULTIMATE PRICED ENTERPRISED VERSION?

PLEASE REVERT BACK TO ME AT THE EARLIEST.

Hi,

this has been asked before but none of the other answers worked for me. I want to generate code from expressions that were simplified using some assumptions. I the assumptions remain on the variables Maple replaces variable names wich I don't understand.

Here is my script where I tried to remove the assumptions based on the answers of previous questions. Unfortunately, even though assumptions are removed in the end, Code generation still replaces the variables.

Thank you in advance!

Here is my minimal exaple Code:

 

restart:

 

# test removing assumptions

funa:=x+y

x+y

(1)

 Maple_proc := codegen[makeproc](funa,(ListTools[Flatten]([eval(alist,1)])));

proc (alist) x+y end proc

(2)

# make some assumptions

assume(x,real);assume(y,real);

x,y

x, y

(3)

#place variables in a list

alist:=[x,y];

[x, y]

(4)

# make cool interferences with assumptions...

# clear assumptions

# try 1 from https://www.mapleprimes.com/questions/207601-Remove-Assumptions-

nms:=convert(indets(alist,name),list);
nmsS:=convert~(nms,string);
L:=StringTools:-Substitute~(nmsS,"~",""); #Removing "~"
L1:=parse~(L);
S:=nms=~L1;
Expr:=subs(S,expr);

[x, y]

 

["x~", "y~"]

 

["x", "y"]

 

[x, y]

 

[x = x, y = y]

 

expr

(5)

hasassumptions(x)

true

(6)

# try 2

nops(alist)

2

(7)

for i from 1 to nops(alist) do
parse(cat(StringTools[Substitute]~(alist[i],"~",""),":='",StringTools[Substitute]~(alist[i],"~",""),"'"));
end do;

'x'

 

'y'

(8)

# check if assumtions are there

hasassumptions(x)

true

(9)

#try 3 https://www.mapleprimes.com/questions/39555-Unassume

for u in alist do
`property/object`[u]:=evaln(`property/object`[u]);
`property/OrigName`[u]:=evaln(`property/OrigName`[u]);
end do;

`property/object`[x]

 

`property/OrigName`[x]

 

`property/object`[y]

 

`property/OrigName`[y]

(10)

hasassumptions(x)

false

(11)

hasassumptions(y)

false

(12)

alist

[x, y]

(13)

funb:=x+y

x+y

(14)

 Maple_proc := codegen[makeproc](funb,(ListTools[Flatten]([eval(alist,1)])));

proc (x, y) x+y end proc

(15)

 Maple_proc := codegen[makeproc](funa,(ListTools[Flatten]([eval(alist,1)])));

proc (x, y) x+y end proc

(16)

 

 CodeGeneration[C](Maple_proc, optimize, declare=[x::float,y::float], defaulttype=float, deducetypes=false, coercetypes=false, output="fun.c");

Warning, the following variable name replacements were made: x~ -> cg, y~ -> cg1

 

 

>

 

 

 

 

 

 

 

 


 

Download testunassuming.mw

Hello guys

I have a simple but crucial question about variation, especially in cosmology and gravity. suppose we have the action such as

S=int(sqrt(-g)*F(R,RµναβRµναβ),d^4x) where g is determinant metric gµν and d^4x is space in 4D and F is an arbitrary function of R (Ricci scalar) and scalar which created by Riemann tensor. How we can define this action in the maple 18 and take variation with respect to the metric.

thanks

First 94 95 96 97 98 99 100 Last Page 96 of 2097