Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

I can't figure out how Maple obtained this solution and looking for some ideas to try.

It is first order non-linear ode in y(x), which is separable.

ode:=diff(y(x),x)=x*ln(y(x));
dsolve([ode,y(1)=1],y(x))

But the general solution is

sol:=dsolve(ode)

Setting up manually an equation using the given condition in order to solve for _C1, produces no solution. 

eq:=subs([y(x)=1,x=1],sol);
solve(eq,_C1)

Warning, solutions may have been lost
 

Also 

coulditbe(exp(RootOf(1 + 2*Ei(1, -_Z) + 2*_C1))=1)

   FAIL

So how did Maple solve for the constant of integration which results in particular solution y(x)=1 that is supposed to satisfy the condition y(1)=1?  

It is clear that y(x)=1 satisfies the ODE itself. But I am asking about how it also satisfies y(1)=1

(odetst says it does satisfy the ODE and condition as well. So Maple must have done something very smart under the cover)

Next I tried

ode:=diff(y(x),x)=x*ln(y(x));
sol:=dsolve(ode,y(x));
sol:=DEtools:-remove_RootOf(sol);
sol:=subs([y(x)=1,x=1],sol)

And now

solve(sol,_C1)

Error, (in Ei) numeric exception: division by zero
 

Just wondering how did Maple decide that y(x)=1 satisfies y(1)=1? I do not see it.

Using Maple 2020.1. But same result on Maple 2019

Hi,

How to display only trigonometric values ( like 0,Pi/6,Pi/3..)  of the parameter alpha in the Explore Command?

Thanks

 

ROTATIONConiquesEllipseAnimation.mw

Hi , 

i want to find simple equation of rotate Ellipse  ( El1,EL2,El3 in the  worksheet), with calssic formula 

Ideas? Thanks

QuestionConiqueRotation.mw

Etude d'un cas particulier a := 5: b := 7: k := 9: A := [a, 0]: B := [0, b]: #A et B fixes P := [t, 0]: Q := [0, k/t]:#P et Q 2 points mobiles cir := -a*x-b*y+x^2+y^2 = 0: sol := solve(subs(y = 5, cir), x): cen := [solve(diff(cir, x)), solve(diff(cir, y))]: x0 := sol[1]: y0 := 5: M := [x0, y0]: R := sqrt(cen[1]^2+cen[2]^2): beta := arctan(diff(solve(EQ(M, cen), y), x)): Recherche des valeurs de t pour que les 2 droites soient perpendiculaires eq := t^2*(y0-b)+t*(a*b-a*y0+b*x0-k)-x0*(a*b-k) = 0; sol := solve(eq, t); t := sol[1]; tp := sol[2]; P1 := [t, 0]; Q1 := [0, k/t]; PQ1 := simplify(x*(-a*b+b*t+k)+y*t*(t-a)-t*(-a*b+b*t+k)) = 0:#1ere tangente PQ2 := simplify(x*(-a*b+b*tp+k)+y*tp*(tp-a)-tp*(-a*b+b*tp+k)) = 0:#2ième tangente P2 := [tp, 0]; Q2 := [0, k/tp]; CIR := implicitplot(cir, x = -4 .. 8, y = -4 .. 12, color = red); Fig := proc (alpha) local Dr1, DR1, Dr2, DR2, N, u0, v0, Po, t, tp, sol; global a, b, k, cen, R; u0 := cen[1]+R*cos(alpha); v0 := cen[2]+R*sin(alpha); N := [u0, v0]; sol := solve(t^2*(v0-b)+t*(b*u0-a*v0+a*b-k)-u0*(a*b-k) = 0, t); t := sol[1]; tp := sol[2]; Dr1 := simplify(x*(-a*b+b*t+k)+y*t*(t-a)-t*(-a*b+b*t+k)) = 0; DR1 := implicitplot(Dr1, x = -4 .. 8, y = -4 .. 12, color = brown); Dr2 := simplify(x*(-a*b+b*tp+k)+y*tp*(tp-a)-tp*(-a*b+b*tp+k)) = 0; DR2 := implicitplot(Dr2, x = -4 .. 8, y = -4 .. 12, color = pink); Po := pointplot([N[]], symbol = solidcircle, color = [black], symbolsize = 8); display([Po, DR1, DR2]) end proc; DrPQ1 := implicitplot(PQ1, x = -4 .. 22, y = -4 .. 12, color = blue); DrPQ2 := implicitplot(PQ2, x = -4 .. 22, y = -4 .. 12, color = blue); Points := pointplot([A[], B[], M[], P1[], P2[], Q1[], Q2[], cen[]], symbol = solidcircle, color = [green], symbolsize = 10); T := plots:-textplot([[A[], "A"], [B[], "B"], [M[], "M"], [P1[], "P1"], [P2[], "P2"], [Q1[], "Q1"], [Q2[], "Q2"], [cen[], "cen"]], font = [times, 10], align = {below, left}); n := 19; display([seq(Fig(2*i*Pi/n), i = 0 .. n), Fig(beta), CIR, DrPQ1, DrPQ2, Points, T], scaling = constrained, size = [500, 500]); I would find out the focus of the ellipse. Thank you.

Theoretically, if the multiplication sign  is missed Maple needs to give reminders or warnings.But the following is not the case, why?I am surprised its output. 

x:=1
                             x := 1
x(2+1)Actually, I want to enter x*(2+1)

                               1
x(sin(y))Actually, I want to enter x*(sin(y))
                               1

I am a little confused by why this error occurs in the second line and not the first, as well as the weird details specified in it. I don't know if the commands that are being called are inbuilt or not, but it is a safe bet that they will be. thankyou.


 

MAX := max({[seq(seq(n-(n^k-floor(n^(1/k))^(k-1)*igcd(floor(ithprime(n)^k/n^k), floor(n^(1/k))))^(1/k), n = 2 .. 100), k = 2 .. 100)][]}):

seq(seq(piecewise(radnormal(n-(n^k-floor(n^(1/k))^(k-1)*igcd(floor(ithprime(n)^k/n^k), floor(n^(1/k))))^(1/k)) = MAX, [n, k], NULL), n = 2 .. 100), k = 2 .. 100)

Error, (in radnormal/rational/nthpower) cannot determine if this expression is true or false: iroot(646162507019111437893207695980096110233782566593779/(_c27_37*_c25_38), [_c25_38, 1]) < 0

 

``


 

Download ASKMAPLE000.mw

In preparing to sample problems, I came across this difference in an output depending upon the input type: 2d Input vs. Maple Input. Is there a typo on my part?


 

restart; kernelopts(version); Digits

`Maple 2020.1, X86 64 WINDOWS, Jun 10 2020, Build ID 1474787`

 

10

(1)

Very happy with the output of the following line:

x := evalf[30](3.0^1.2)

3.73719281884655197790004100992

(2)

 

But I'm confused about the output of the next line. Is it a limit to the calculation or a display problem?

a := evalf[30](3.0^(1.2))

3.737192819

(3)

 

and yet this next output looks fine:

b := evalf[30]( exp( 1.2 * ln(3)))

3.73719281884655197790004100989

(4)

 

Fortunately, there appears to be no difference between x and b:

evalf[30](x-b)

0.3e-28

(5)

 

But these next  lines suggest there is an actual limit in the calculation of a.

evalf[30](a-b)

0.15344802209995899011e-9

(6)

evalf[30](a - b);

0.15344802209995899011e-9

(7)

Note - when Digits is set to 30, the calculation difference between x and a disappears.

``


 

Download 2020_evalf_digits.mw

Hi,

How do I solve numerically this set of equations with the following ICs to plot U1(x), phi(x),diff(phi(x),x) versus x:

diff(U1(x),x)=-diff(phi(x),x)/(U1(x)-T/U1(x));
diff(phi(x),x$2)=(1+A1*phi(x)+A2*phi(x)**(3/2)+A3*phi(x)**2)-(M1/U1(x));
where

A1:=(2*k-1)/(2*k-3);
A2:=8*sqrt(2/pi)*(beta-1)*k*Gamma(k)/(3*Gamma(k-0.5)*(2*k-3)**(3/2));
A3:=(4*k**2-1)/(2*(2*k-3)**2);
M1=0.1+sqrt(T+(1/A1));
(Gamma is gamma function)

assume, for example, T=0.1, pi=3.14, beta=0.6, k=3.5

ICs:

U1(x=0)=M1, phi(x=0)=0, diff(phi(x=0),x)=0.001.

Thanks.

I know we can use Maple LPSolver for linear programming problem (eg. https://www.maplesoft.com/support/help/Maple/view.aspx?path=Optimization/LPSolveMatrixForm), while I am wondering if we can use maple to solve a LP problem symbolically when some of the constants in those examples are unknow parameters.

If no, any suggestions of other solutions?I guess I have to do the simplex method manually? Thanks.

From help, it says

coulditbe routine returns true if there is a possible value of x1 that satisfies prop1

my question is, how to find out this condition/possible values that Maple found?  This infomration is very useful, but now I do not see how to obtain it. All what coulditbe retuirn is true or false.

Context of why I am asking:  Sometimes odetest do not verify its own solutions. And coulditbe can help in finding under what conditions the solution can satisfy the ode. Here is an example

restart;
ode:=diff(y(x),x) = abs(y(x))+1;
solExplicit:=dsolve(ode);
offset := odetest~([solExplicit],ode)

gives

[exp(-x)/_C1 - abs((-exp(-x) + _C1)/_C1) - 1, exp(x)*_C1 - abs(exp(x)*_C1 - 1) - 1]

Both solution fail odetest. 

coulditbe~(offset,0)

gives true

So there are assumptions/conditions which makes the solution satisfy the ODE. In this case, by inspection one can see what these conditions are. They are, for one solution:

(-exp(-x) + _C1)/_C1  >0

and for the other, the condition is

exp(x)*_C1 - 1 >0

Under these assumptions, odetest would have given 0 for each odetest.

And it is this information I wanted to obtain automatically from coulditbe.

In Mathematica, Reduce is used for this. Reduce gives conditions under which something is satisfied. For example, 

Reduce[ C[1] Exp[x] - Abs[C[1] Exp[x] - 1] - 1 == 0, {x, C[1]}, Reals]

Gives

C[1] >= Exp[-x]


While the above in  Maple

coulditbe( C[1]*exp(x)- abs( C[1]*exp(x)-1)-1 = 0)

gives true  only, but without the important information, true under what conditions.

Is there a different command in Maple which could give this information?

Hello, dear forum users!

Does anyone use the method of homotopy analysis (HAM) and the NOPH package in their work. (moderator: link)
 


It seems to me that only HAM can help.

I ask for help if someone has already mastered.

There are no developments, as I do not own the NOPH package.

Could anyone help me with: How to start a command-line terminal for Maple in Linux Ubuntu? Thanks a lot

Hi there.

I need to calculate multiplcations of huge polynoms with reducing in GF(2^m) with m>1000.

For example, modpol(a*a,f_t,t,2^N) with N=4007, degree(a)=8008 and degree(f_t)=8009.

Standard modpol calculates this in 4-5 sec on my computer.

Maybe there is an easy way to speed up this calculation?

Thank you.

ex.mw

nn.txt

Hi everyone,

I am trying to integrate this function, however, it did not generate any results. Is there any chance to make this run?
 

I0 := 1/sqrt(1-C2OverC1*cos(t))^3

1/(1-C2OverC1*cos(t))^(3/2)

(1)

`assuming`([int(I0, t = 0 .. 2*Pi)], [C2OverC1 > -1, C2OverC1 < 1])

``

``

``


 

Download ellipticIntegral.mw

Hello all, 

Would you please tell me how to rewrite the expression 'Is_square' like 'Is_square2'?

The way how the first expression is re-written is that both numerator and denominator were divided by 'sigma^2*omega[rK]^2': 

One attempt I made was to use 'algsub' command using the subexpression ''sigma^2*omega[rK]'', but somehow it missed the term in the denominator. 


 

restart;

Is_square := M[dmax]*(sigma^2*omega[rK]^2 + omega[r]^2)*L[sigma]/(3*p*omega[r]*omega[rK]*L[mu]^2*sigma^2);

(1/3)*M[dmax]*(sigma^2*omega[rK]^2+omega[r]^2)*L[sigma]/(p*omega[r]*omega[rK]*L[mu]^2*sigma^2)

(1)

Is_square2 := M[dmax]*(1 + omega[r]^2/(sigma^2*omega[rK]^2))*L[sigma]/(3*p*omega[r]*L[mu]^2/omega[rK]);

(1/3)*M[dmax]*(1+omega[r]^2/(sigma^2*omega[rK]^2))*L[sigma]*omega[rK]/(p*omega[r]*L[mu]^2)

(2)

algsubs(omega[rK]*sigma^2=tt, Is_square);

(1/3)*M[dmax]*L[sigma]*(tt*omega[rK]+omega[r]^2)/(p*omega[r]*L[mu]^2*omega[rK]*sigma^2)

(3)

 


 

Download Qprime_20200621.mw

 

First 410 411 412 413 414 415 416 Last Page 412 of 2097