Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Hi I have experienced another Maple 2021 error with those of my students who Maple 2021 Mac edition. 

Lets say their have saved a .mw on their main drive and tries to open the file from inside Maple. Maple gives an error like "file cannot be opened - please try to another". This also happens when trying to open the file from outside Maple. 

This never happens on the Windows version. So any idea what could be causing this ?

 

 

 

 

 

"D1(s,t) :=P- (alpha1-beta*S) +  alpha2 + beta2 *q(t)^();"

proc (s, t) options operator, arrow; P+beta*S-alpha1+alpha2+beta2*q(t) end proc

(1)

"(->)"

dem

(2)

``

ode1 := diff(q(t), t)+theta*q(t)/(1+N-t) = -D1(s, t)

diff(q(t), t)+theta*q(t)/(1+N-t) = -P-beta*S+alpha1-alpha2-beta2*q(t)

(3)

fn1 := q(t)

q(t)

(4)

ic1 := q(T) = 0

q(T) = 0

(5)

sol1 := simplify(dsolve({ic1, ode1}, fn1))

q(t) = (-S*beta-P+alpha1-alpha2)*(Int(exp(beta2*_z1)*(1+N-_z1)^(-theta), _z1 = T .. t))*exp(-beta2*t)*(1+N-t)^theta

(6)

NULL

Download data.mw

Hello all. I'm trying to solve the following first-order differential equation. 

Please help in understanding why the equation (6) doesn't contain proper solution for the function q(t) on solving the ode1 with the given initial condition

How (can I?) display the value in a legend in Engineering format -- 10^3, 10^-6, etc?

Lres := 1/((2*Pi*freq)^2*Cres);
ftest := 10e6;
p1 := plot(eval(subs(freq = ftest, Lres)), Cres = 0.10000000 .. 0.10000000, labels = [Cres, 'Lres'], legend = ftest, color = red, title = 'Inductance*Value*as*a*Function*of*Resonant*Capacitance', axis = [gridlines = [default]]);

I would like the legend to display 10^6 rather than 1^7.

I've tried changing the default number format for the whole worksheet to Engineering, but that doesn't seem to apply to legends.

 

thank you.

Hi,

I'd like to know, if it is possible to define any sort of range for parameters in NonlinearFit. E. g. I know that one of parameters should be somewhere between 0.2 - 0.4. I know there is a possibility of initalvalues, but using it doesn't lead into this range.

Thanks.

Dear all,

Recently I discovered the noncommuting variables in the Physics package due to Edgardo Cheb-Terrab; doubtless there are many posts here on Maple Primes describing them.  Here is one more, which shows how to use this package to prove the Schur complement formula.

https://maple.cloud/app/6080387763929088/Schur+Complement+Proof+in+Maple

I guess I have a newbie's question: how well-integrated are Maple Primes and the Maple Cloud?  Anyway that seemed the easiest way to share this.

-r

Dear all;

Some of you will have heard of the new open access (and free of page charges) journal Maple Transactions https://mapletransactions.org which is intended to publish expositions on topics of interest to the Maple community. What you might not have noticed is that it is possible to publish your papers as Maple documents or as Maple workbooks.  The actual publication is on Maple Cloud, so that even people who don't have Maple can read the papers.

Two examples: one by Jürgen Gerhard, https://mapletransactions.org/index.php/maple/article/view/14038 on Fibonacci numbers

and one by me, https://mapletransactions.org/index.php/maple/article/view/14039 on Bohemian Matrices (my profile picture here is a Bohemian matrix eigenvalue image).

I invite you to read those papers (and the others in the journal) and to think about contributing.  You can also contribute a video, if you'd rather.

I look forward to seeing your submissions.

Rob Corless, Editor-in-Chief, Maple Transactions

 

Dear all,

Recently we learned that the idea of "anti-secularity" in perturbation methods was known to Mathieu already by 1868, predating Lindstedt by several years.  The Maple worksheet linked below recapitulates Mathieu's computations:

https://github.com/rcorless/MathieuPerturbationMethod

Nic Fillion and I wrote a more general introduction to perturbation methods using Maple and you can find that paper at 

https://arxiv.org/abs/1609.01321

and the supporting Maple code in a workbook at 

https://github.com/rcorless/Perturbation-Methods-in-Maple

For instance, one of the problems solved is the lengthening pendulum and when we do so taking proper account of anti-secularity (we use renormalization for that one, I seem to remember) we get an error curve that is bounded over time.

 

 

Hope that some of you find this useful.

In a french magazine written by High Schools teachers I found this problem:

let a, b, p, q four strictly positive integers such that a > b^2 and p > q+1;
find 4-tuples (a, b, p, q) such that 

(a^2 - b^4) = p!/q!

Given the source of this problem I suspect that there is a trick to answering this question.
After some hours spent, I have found no general method to solve it, only a few solutions (first one and second one are almost obvious), for instance

rel := a^2 - b^4 = p!/q!:

eval(rel, [a= 5, b=1, q=1, p=4]);   
eval(rel, [a=11, b=1, q=1, p=5]);
eval(rel, [a=71, b=1, q=1, p=7]);
eval(rel, [a= 2, b=1, q=2, p=3]);
eval(rel, [a=19, b=1, q=2, p=6]);
eval(rel, [a=21, b=3, q=2, p=6]);

Do you have any idea how to solve this problem?
Could it be handled by Maple (without a systematic exploration of a part of N^4)?

Thanks in advance

lets say we have one or two lines 

y=2x-4 and y = -2x+4 is it possible to get Maple to illustrate the angle between these two lines in a plot? Or the angle of inclination in respect to the x-axes for them individually? 

Welcome to Maplesoft Orientation Week!  We know what a difference math software can make when it comes to enhancing student learning, but we also know that everyone is very busy at the beginning of the school year! So our goal for this week is to make it easier for high school and university students to select the best math tool for their needs, and help them get on track for a great math year.  The week’s activities include free training on Maple and Maple Learn, discounts on Student Maple, live events with some of your favorite math TikTok personalities, and even the chance to win an iPad Air!  Check out all the activities now, and plan your week or tell your students.

Orientation week runs Mon. Sept. 20 – Fri. Sept. 24.

kindly help me to find the inverse Laplace of this function. I tried but maple leaves the integral unevaluated.
 

restart

with(inttrans)

expr := exp(a-sqrt(a^2+b*s))/s

exp(a-(a^2+b*s)^(1/2))/s

(1)

`assuming`([invlaplace(expr, s, t)], [b > 0])

(1/2)*(b/Pi)^(1/2)*(int(exp(-a^2*_U1/b+a-(1/4)*b/_U1)/_U1^(3/2), _U1 = 0 .. t))

(2)

NULL


 

Download invrslplc.mw

how can revision of error in 

restart;
u0 := proc (x) options operator, arrow; 1+2*x end proc; h := 0;
for k from 0 to 5 do U := proc (k, h) options operator, arrow; eval((diff(u0(x), [`$`(x, k)]))/factorial(k), x = 0) end proc end do;
m := h+1;
for k from 0 to 5 do U := proc (k, h) options operator, arrow; (sum(sum(U(r, h-s)*U(k-r, s), s = 0 .. h), r = 0 .. k)+(k+1)*U(k, h))/m end proc end do;
U(0, 1);
Error, (in U) too many levels of recursion

 

I have the following expression.

Ps = (x - 600)(15000 + 400*(y - 4000)/2000 + 15000*0.40*(850 - x)/100) - y

Maple will evaluate this to:

Ps = (x - 600)(15000 + 400*(y - 4000)/2000 + 15000*0.40*(850 - x)/100) - y

Screenshot:

Plotting these two in 2D on Desmos to demonstrate: https://www.desmos.com/calculator/tvp4rbzxzp

These two are not the same expression. Is Maple broken or am I doing something wrong?

Hello. Please help me solve the ODE system

ODU_v2.mw
 

restart

with(linalg):

r1 := 1:

1

 

0.1111110000e-2

 

0

 

1920.000000+0.7407400000e-3*I

(1)

J := proc (n, x) options operator, arrow; BesselJ(n, x) end proc:

nsize := floor(2*k)+1;

3

(2)

n := 1; A1 := matrix([[(lambda(r)+2*mu(r))*r^2, 0], [0, mu(r)*r^2]]); B1 := matrix([[(diff(lambda(r), r)+2*(diff(mu(r), r)))*r^2+(lambda(r)+2*mu(r))*r, I*n*(lambda(r)+mu(r))*r], [I*n*(lambda(r)+mu(r))*r, (diff(mu(r), r))*r^2+mu(r)*r]]); C1 := matrix([[(diff(lambda(r), r))*r-lambda(r)-(n^2+2)*mu(r)+omega^2*rho(r)*r^2, I*n*((diff(lambda(r), r))*r-lambda(r)-3*mu(r))], [I*n*((diff(mu(r), r))*r+lambda(r)+3*mu(r)), -(diff(mu(r), r))*r-n^2*lambda(r)-(2*n^2+1)*mu(r)+omega^2*rho(r)*r^2]]); U := vector([U1(r), U2(r)]); DU := vector([diff(U1(r), r), diff(U2(r), r)]); D2U := vector([diff(U1(r), `$`(r, 2)), diff(U2(r), `$`(r, 2))]); T1 := multiply(A1, D2U); T2 := multiply(B1, DU); T3 := multiply(C1, U); prav := evalm(T1+T2+T3); pr1 := prav[1]; pr2 := prav[2]; p1 := evalc(Re(pr1)); p2 := evalc(Im(pr1)); p3 := evalc(Re(pr2)); p4 := evalc(Im(pr2)); WWVV := evalf(subs(x = k*r1, H(n, x)))*evalf(subs(x = k2*r1, H(n, x)))*n^2-evalf(subs(x = k*r1, DH(n, x)))*evalf(subs(x = k2*r1, DH(n, x)))*k*k2*r1^2; `αv1` := I*evalf(subs(x = k2*r1, DH(n, x)))*k2*omega*r1^2/WWVV; `αv2` := -evalf(subs(x = k2*r1, H(n, x)))*n*omega*r1/WWVV; `αv3` := (evalf(subs(x = k*r1, DJ(n, x)))*evalf(subs(x = k2*r1, DH(n, x)))*I^n*k*k2*r1^2-I^n*n^2*evalf(subs(x = k*r1, J(n, x)))*evalf(subs(x = k2*r1, H(n, x))))/WWVV; `αv4` := evalf(subs(x = k*r1, H(n, x)))*r1*n*omega/WWVV; `αv5` := -I*evalf(subs(x = k*r1, DH(n, x)))*r1^2*k*omega/WWVV; `αv6` := I*I^n*n*k*r1*(evalf(subs(x = k*r1, DJ(n, x)))*evalf(subs(x = k*r1, H(n, x)))-evalf(subs(x = k*r1, DH(n, x)))*evalf(subs(x = k*r1, J(n, x))))/WWVV; gv1 := rho1*(-evalf(subs(x = k*r1, D2H(n, x)))*k^2*r^2*(4*nu+3*xi)-3*evalf(subs(x = k*r1, DH(n, x)))*k*r1*xi+evalf(subs(x = k*r1, H(n, x)))*(-4*k^2*r1^2*nu-3*k^2*r1^2*xi+(3*I)*omega*r1^2-2*n^2*nu+3*n^2*xi))/(3*r1^2); gv2 := (6*rho1/(3*r1^2)*I)*n*nu*(evalf(subs(x = k2*r1, H(n, x)))-k2*r1*evalf(subs(x = k2*r1, DH(n, x)))); gv3 := rho1*(-I^n*evalf(subs(x = k*r1, D2J(n, x)))*k*r1^2*(4*nu+3*xi)+I^n*evalf(subs(x = k*r1, DJ(n, x)))*k*r1*(2*nu-3*xi)+I^n*evalf(subs(x = k*r1, J(n, x)))*(-4*k^2*r1^2*nu-3*k^2*r1^2*xi+(3*I)*omega*r1^2-2*n^2*nu+3*n^2*xi))/(3*r1^2); gv4 := (2*nu*rho1/r1^2*I)*n*(evalf(subs(x = k*r1, H(n, x)))-evalf(subs(x = k*r1, DH(n, x)))*k*r1); gv5 := nu*rho1*(evalf(subs(x = k2*r1, D2H(n, x)))*k2^2*r1^2-evalf(subs(x = k2*r1, D2H(n, x)))*k2*r1+evalf(subs(x = k2*r1, H(n, x)))*n^2)/r1^2; gv6 := (2*nu*rho1/r1^2*I)*n*I^n*(evalf(subs(x = k*r1, J(n, x)))-k*r1*evalf(subs(x = k*r1, DJ(n, x)))); E := matrix([[`αv1`*gv1+`αv4`*gv2+lambda(r1)/r1, `αv2`*gv1+`αv4`*gv2+I*n*lambda(r1)/r1], [`αv1`*gv4+`αv4`*gv5+I*n*mu(r1)/r1, `αv2`*gv4+`αv5`*gv5-mu(r1)/r1]]); G := vector([-gv1*`αv3`-gv2*`αv6`-gv3, -gv4*`αv3`-gv5*`αv6`-gv6]); e1 := (lambda2*n^2*evalf(subs(x = kl*r2, J(n, x)))-kl^2*r2^2*evalf(subs(x = kl*r2, D2J(n, x)))*(lambda2+2*mu2)-kl*lambda2*r2*evalf(subs(x = kl*r2, DJ(n, x))))/r2^2; e2 := (2*mu2*I)*n*(evalf(subs(x = kt*r2, J(n, x)))-kt*r2*evalf(subs(x = kt*r2, DJ(n, x))))/r2^2; e3 := (I*n*2)*(evalf(subs(x = kl*r2, J(n, x)))-kl*r2*evalf(subs(x = kl*r2, DJ(n, x))))/r2^2; e4 := (kt^2*r2^2*evalf(subs(x = kt*r2, D2J(n, x)))-kt*r2*evalf(subs(x = kt*r2, DJ(n, x)))+n^2*evalf(subs(x = kt*r2, J(n, x))))/r2^2; gamma1 := kt*r2*evalf(subs(x = kt*r2, DJ(n, x)))/WW; gamma2 := I*n*evalf(subs(x = kt*r2, J(n, x)))/WW; gamma3 := I*n*evalf(subs(x = kl*r2, J(n, x)))/WW; gamma4 := -kl*r2*evalf(subs(x = kl*r2, DJ(n, x)))/WW; WW := (kl*r2^2*evalf(subs(x = kl*r2, DJ(n, x)))*kt*evalf(subs(x = kt*r2, DJ(n, x)))-n^2*evalf(subs(x = kl*r2, J(n, x)))*evalf(subs(x = kt*r2, J(n, x))))/r2; F := matrix([[r2^2*(gamma1*e1+gamma3*e2+lambda(r2)/r2), r2^2*(gamma2*e1+gamma4*e2+I*n*lambda(r2)/r2)], [mu2*r2^2*(gamma1*e3+gamma3*e4+I*n*mu(r2)/(mu2*r2)), mu2*r2^2*(gamma2*e3+gamma4*e4-mu(r2)/(mu2*r2))]]); Ur1 := vector([U1(r1), U2(r1)]); Ur2 := vector([U1(r2), U2(r2)]); DUr1 := vector([Dx1(r1)+I*Dy1(r1), Dx2(r1)+I*Dy2(r1)]); DUr2 := vector([Dx1(r2)+I*Dy1(r2), Dx2(r2)+I*Dy2(r2)]); CCR1 := multiply(A1, DUr1); CCR2 := multiply(E, Ur1); CR := evalm(CCR1+CCR2); CCR11 := multiply(A1, DUr2); CCR22 := multiply(F, Ur2); CR2 := evalm(CCR11+CCR22); ggr1 := expand(evalc(Re(CR[1]))); ggr2 := expand(evalc(Im(CR[1]))); ggr3 := expand(evalc(Re(CR[2]))); ggr4 := expand(evalc(Im(CR[2]))); ggr5 := expand(evalc(Re(CR2[1]))); ggr6 := expand(evalc(Im(CR2[1]))); ggr7 := evalc(Re(CR2[2])); ggr8 := evalc(Im(CR2[2])); gr1 := subs(Dx1(r1) = (D(x1))(r1), Dx2(r1) = (D(x2))(r1), Dy1(r1) = (D(y1))(r1), Dy2(r1) = (D(y2))(r1), r = r1, ggr1); gr2 := subs(Dx1(r1) = (D(x1))(r1), Dx2(r1) = (D(x2))(r1), Dy1(r1) = (D(y1))(r1), Dy2(r1) = (D(y2))(r1), r = r1, ggr2); gr3 := subs(Dx1(r1) = (D(x1))(r1), Dx2(r1) = (D(x2))(r1), Dy1(r1) = (D(y1))(r1), Dy2(r1) = (D(y2))(r1), r = r1, ggr3); gr4 := subs(Dx1(r1) = (D(x1))(r1), Dx2(r1) = (D(x2))(r1), Dy1(r1) = (D(y1))(r1), Dy2(r1) = (D(y2))(r1), r = r1, ggr4); gr5 := subs(Dx1(r2) = (D(x1))(r2), Dx2(r2) = (D(x2))(r2), Dy1(r2) = (D(y1))(r2), Dy2(r2) = (D(y2))(r2), r = r2, ggr5); gr6 := subs(Dx1(r2) = (D(x1))(r2), Dx2(r2) = (D(x2))(r2), Dy1(r2) = (D(y1))(r2), Dy2(r2) = (D(y2))(r2), r = r2, ggr6); gr7 := subs(Dx1(r2) = (D(x1))(r2), Dx2(r2) = (D(x2))(r2), Dy1(r2) = (D(y1))(r2), Dy2(r2) = (D(y2))(r2), r = r2, ggr7); gr8 := subs(Dx1(r2) = (D(x1))(r2), Dx2(r2) = (D(x2))(r2), Dy1(r2) = (D(y1))(r2), Dy2(r2) = (D(y2))(r2), r = r2, ggr8); sys := p1 = 0, p2 = 0, p3 = 0, p4 = 0; Inits := gr3 = evalc(Re(G[2])), gr4 = evalc(Im(G[2])), gr1 = evalc(Re(G[1])), gr2 = evalc(Im(G[1])), gr5 = 0, gr6 = 0, gr7 = 0, gr8 = 0; dde := dsolve({Inits, sys}, numeric, [x1(r), x2(r), y1(r), y2(r)], method = bvp[trapdefer], 'maxmesh' = 5000)

1

 

5860000000.*r^2*(diff(diff(x1(r), r), r))+5860000000.*r*(diff(x1(r), r))-4880000000.*r*(diff(y2(r), r))+(-6840000000.+0.1972224000e11*r^3-0.1380556800e11*r^2)*x1(r)-(15217.76256*r^3-10652.43379*r^2)*y1(r)+6840000000.*y2(r) = 0, 5860000000.*r^2*(diff(diff(y1(r), r), r))+5860000000.*r*(diff(y1(r), r))+4880000000.*r*(diff(x2(r), r))+(15217.76256*r^3-10652.43379*r^2)*x1(r)+(-6840000000.+0.1972224000e11*r^3-0.1380556800e11*r^2)*y1(r)-6840000000.*x2(r) = 0, 980000000.0*r^2*(diff(diff(x2(r), r), r))-4880000000.*r*(diff(y1(r), r))+980000000.0*r*(diff(x2(r), r))-6840000000.*y1(r)+(-6840000000.+0.1972224000e11*r^3-0.1380556800e11*r^2)*x2(r)-(15217.76256*r^3-10652.43379*r^2)*y2(r) = 0, 980000000.0*r^2*(diff(diff(y2(r), r), r))+4880000000.*r*(diff(x1(r), r))+980000000.0*r*(diff(y2(r), r))+6840000000.*x1(r)+(15217.76256*r^3-10652.43379*r^2)*x2(r)+(-6840000000.+0.1972224000e11*r^3-0.1380556800e11*r^2)*y2(r) = 0

 

980000000.0*(D(x2))(1)-3407670.437*x1(1)-979699593.0*y1(1)-982493864.9*x2(1)+2501551.625*y2(1) = -1147.143928, 980000000.0*(D(y2))(1)+979699593.0*x1(1)-3407670.437*y1(1)-2501551.625*x2(1)-982493864.9*y2(1) = 522.0509891, 5860000000.*(D(x1))(1)+1012610130.*x1(1)+3433520814.*y1(1)-3395293.932*x2(1)-3899703885.*y2(1) = 1553476.957-0.8860949e-3*r^2, 5860000000.*(D(y1))(1)-3433520814.*x1(1)+1012610130.*y1(1)+3899703885.*x2(1)-3395293.932*y2(1) = 582234.6500+.6073438988*r^2, 3750400000.*(D(x1))(.8)-0.1805979289e11*x1(.8)-3057.354840*y1(.8)+182.8516896*x2(.8)+0.2220128109e11*y2(.8) = 0, 3750400000.*(D(y1))(.8)+3057.354840*x1(.8)-0.1805979289e11*y1(.8)-0.2220128109e11*x2(.8)+182.8516896*y2(.8) = 0, 627200000.0*(D(x2))(.8)-182.8520640*x1(.8)-0.2610528071e11*y1(.8)-0.2508771663e11*x2(.8)-607.0797125*y2(.8) = 0, 627200000.0*(D(y2))(.8)+0.2610528071e11*x1(.8)-182.8520640*y1(.8)+607.0797125*x2(.8)-0.2508771663e11*y2(.8) = 0

 

Error, (in dsolve/numeric/BVPSolve) unable to store '-HFloat(8.860193192958832e-4)+0.8860949e-3*r^2' when datatype=float[8]

 

``


 

Download ODU_v2.mw

 

with(plots);
f := x -> x^3 + 3^x;
complexplot3d(f, -15 - 22*I .. 15 + 22*I);

 

 

This gives good color graph however I would like to see it like the way this cat graphed it.

https://www.quora.com/How-do-I-solve-for-x-in-x-3-3-x-17

First 252 253 254 255 256 257 258 Last Page 254 of 2097