Maple Questions and Posts

These are Posts and Questions associated with the product, Maple


 

restart: with(LinearAlgebra):

# Motion equation (  Vibration of a cracked composite beam using general solution)  Edited by Adjal Yassine #

####################################################################

Motion equation of flexural  vibration in normalized form 

EI*W^(iv)-m*omega^2*W=0;

EI*W^iv-m*omega^2*W = 0

(1)

 

The general solution form of bending vibration equation

W1:=A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x);

A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x)

(2)

where

E:=2682e6;L:=0.18;h:=0.004;b:=0.02;rho:=2600;area=b*h;m:=rho*h*b;II:=(h*b^3)/12:

0.2682e10

 

.18

 

0.4e-2

 

0.2e-1

 

2600

 

area = 0.8e-4

 

.20800

(3)

mu:=((m*omega^2*L^4/EI)^(1/4)):

 

 Expression of cross-sectional rotation , the bending moment shear  force and torsional moment  are given as follows respectively

theta1 := (1/L)*(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x));

(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x))/L

(4)

M1:= (EI/L^2)*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x));

EI*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x))/L^2

(5)

S1:= (-EI/L^3)*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x));

-EI*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x))/L^3

(6)

 

W2:=A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x);

A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x)

(7)

 

theta2:= (1/L)*(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x));

(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x))/L

(8)

M2:= (EI/L^2)*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x));

EI*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x))/L^2

(9)

S2:= -(EI/L^3)*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x));

-EI*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x))/L^3

(10)

 

The boundary conditions at fixed end W1(0)=Theta(0)=0

X1:=eval(subs(x=0,W1));

A[1]+A[3]

(11)

X2:=eval(subs(x=0,theta1));

(mu*A[2]+mu*A[4])/L

(12)

X2:=collect(X2,mu)*(L/mu);

A[2]+A[4]

(13)

 

The boundary condtions at free end M2(1)=S2(1)=0

X3:=eval(subs(x=1,M2));

EI*(A[5]*mu^2*cosh(mu)+A[6]*mu^2*sinh(mu)-A[7]*mu^2*cos(mu)-A[8]*mu^2*sin(mu))/L^2

(14)

X3:=collect(X3,mu)*(L^2/mu^2/EI);

cosh(mu)*A[5]+sinh(mu)*A[6]-cos(mu)*A[7]-sin(mu)*A[8]

(15)

X4:=eval(subs(x=1,S2));

-EI*(A[5]*mu^3*sinh(mu)+A[6]*mu^3*cosh(mu)+A[7]*mu^3*sin(mu)-A[8]*mu^3*cos(mu))/L^3

(16)

X4:=collect(X4,mu);

-EI*(cosh(mu)*A[6]+sinh(mu)*A[5]-cos(mu)*A[8]+sin(mu)*A[7])*mu^3/L^3

(17)

X4:=collect(X4,EI)*(L^3/mu^3/EI);

-cosh(mu)*A[6]-sinh(mu)*A[5]+cos(mu)*A[8]-sin(mu)*A[7]

(18)

 

The additional boundary conditions at crack location

X5:=combine(M1-M2);

(EI*cosh(mu*x)*mu^2*A[1]-EI*cosh(mu*x)*mu^2*A[5]+EI*sinh(mu*x)*mu^2*A[2]-EI*sinh(mu*x)*mu^2*A[6]-EI*cos(mu*x)*mu^2*A[3]+EI*cos(mu*x)*mu^2*A[7]-EI*sin(mu*x)*mu^2*A[4]+EI*sin(mu*x)*mu^2*A[8])/L^2

(19)

X5:=collect(X5,mu);

(EI*cosh(mu*x)*A[1]-EI*cosh(mu*x)*A[5]+EI*sinh(mu*x)*A[2]-EI*sinh(mu*x)*A[6]-cos(mu*x)*EI*A[3]+A[7]*cos(mu*x)*EI-A[4]*sin(mu*x)*EI+A[8]*sin(mu*x)*EI)*mu^2/L^2

(20)

X5:=collect(X5,EI)*(L^2/mu^2/EI);

A[1]*cosh(mu*x)-A[5]*cosh(mu*x)+A[2]*sinh(mu*x)-A[6]*sinh(mu*x)-A[3]*cos(mu*x)+A[7]*cos(mu*x)-A[4]*sin(mu*x)+A[8]*sin(mu*x)

(21)

X6:=combine(S1-S2);

(-EI*cosh(mu*x)*mu^3*A[2]+EI*cosh(mu*x)*mu^3*A[6]-EI*sinh(mu*x)*mu^3*A[1]+EI*sinh(mu*x)*mu^3*A[5]+EI*cos(mu*x)*mu^3*A[4]-EI*cos(mu*x)*mu^3*A[8]-EI*sin(mu*x)*mu^3*A[3]+EI*sin(mu*x)*mu^3*A[7])/L^3

(22)

X6:=collect(X6,mu);

(-EI*cosh(mu*x)*A[2]+EI*cosh(mu*x)*A[6]-EI*sinh(mu*x)*A[1]+EI*A[5]*sinh(mu*x)+cos(mu*x)*A[4]*EI-cos(mu*x)*A[8]*EI-sin(mu*x)*EI*A[3]+sin(mu*x)*A[7]*EI)*mu^3/L^3

(23)

X6:=collect(X6,EI)*(L^3/mu^3/EI);

-cosh(mu*x)*A[2]+cosh(mu*x)*A[6]-sinh(mu*x)*A[1]+sinh(mu*x)*A[5]+cos(mu*x)*A[4]-cos(mu*x)*A[8]-sin(mu*x)*A[3]+sin(mu*x)*A[7]

(24)

 

X7:=combine(W2-(W1+c8*S1));

(EI*cosh(mu*x)*c8*mu^3*A[2]+EI*sinh(mu*x)*c8*mu^3*A[1]-EI*cos(mu*x)*c8*mu^3*A[4]+EI*sin(mu*x)*c8*mu^3*A[3]-cosh(mu*x)*A[1]*L^3+cosh(mu*x)*A[5]*L^3-sinh(mu*x)*A[2]*L^3+sinh(mu*x)*A[6]*L^3-cos(mu*x)*A[3]*L^3+cos(mu*x)*A[7]*L^3-sin(mu*x)*A[4]*L^3+sin(mu*x)*A[8]*L^3)/L^3

(25)

X8:=combine (theta2-(theta1+c44*M1));

(-EI*cosh(mu*x)*c44*mu^2*A[1]-EI*sinh(mu*x)*c44*mu^2*A[2]+EI*cos(mu*x)*c44*mu^2*A[3]+EI*sin(mu*x)*c44*mu^2*A[4]-L*cosh(mu*x)*mu*A[2]+L*cosh(mu*x)*mu*A[6]-L*sinh(mu*x)*mu*A[1]+L*sinh(mu*x)*mu*A[5]-L*cos(mu*x)*mu*A[4]+L*cos(mu*x)*mu*A[8]+L*sin(mu*x)*mu*A[3]-L*sin(mu*x)*mu*A[7])/L^2

(26)

 

The characteristic matrix function of frequency

FD8:=subs(A[1]=1,A[3]=0,X1);FD12:=subs(A[1]=0,A[3]=0,X1);FD13:=subs(A[1]=0,A[3]=1,X1);FD14:=subs(A[1]=0,A[3]=0,X1);FD15:=subs(A[1]=0,A[3]=0,X1);FD16:=subs(A[1]=0,A[3]=0,X1);FD17:=subs(A[1]=0,A[3]=0,X1);FD18:=subs(A[1]=0,A[3]=0,X1);

1

 

0

 

1

 

0

 

0

 

0

 

0

 

0

(27)

FD21:=subs(A[2]=0,A[4]=0,X2);FD22:=subs(A[2]=1,A[4]=0,X2);FD23:=subs(A[2]=0,A[4]=0,X2);FD24:=subs(A[2]=0,A[4]=1,X2);FD25:=subs(A[2]=0,A[4]=0,X2);FD26:=subs(A[2]=0,A[4]=0,X2);FD27:=subs(A[2]=0,A[4]=0,X2);FD28:=subs(A[2]=0,A[4]=0,X2);

0

 

1

 

0

 

1

 

0

 

0

 

0

 

0

(28)

 

FD31:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD32:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD33:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD34:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD35:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X3);;FD36:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X3);FD37:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X3);FD38:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X3);

0

 

0

 

0

 

0

 

cosh(mu)

 

sinh(mu)

 

-cos(mu)

 

-sin(mu)

(29)

FD41:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD42:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD43:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD44:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD45:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X4);FD46:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X4);FD47:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X4);FD48:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X4);

0

 

0

 

0

 

0

 

-sinh(mu)

 

-cosh(mu)

 

-sin(mu)

 

cos(mu)

(30)

 

FD51:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD52:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD53:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD54:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD55:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X5);FD56:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X5);FD57:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X5);FD58:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X5);

cosh(mu*x)

 

sinh(mu*x)

 

-cos(mu*x)

 

-sin(mu*x)

 

-cosh(mu*x)

 

-sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(31)

FD61:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD62:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD63:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD64:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD65:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X6);FD66:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X6);FD67:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X6);FD68:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X6);

-sinh(mu*x)

 

-cosh(mu*x)

 

-sin(mu*x)

 

cos(mu*x)

 

sinh(mu*x)

 

cosh(mu*x)

 

sin(mu*x)

 

-cos(mu*x)

(32)

 

FD71:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD72:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD73:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD74:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD75:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X7);FD76:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X7);FD77:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X7);FD78:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X7);

(EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3

 

(EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3

 

(EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3

 

(-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3

 

cosh(mu*x)

 

sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(33)

FD81:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD82:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD83:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD84:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD85:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X8);FD86:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X8);FD87:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X8);FD88:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X8);

(-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2

 

(-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2

 

(EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2

 

(EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2

 

sinh(mu*x)*mu/L

 

cosh(mu*x)*mu/L

 

-sin(mu*x)*mu/L

 

cos(mu*x)*mu/L

(34)

 

MM:=matrix(8,8,[[FD11,FD12,FD13,FD14,FD15,FD16,FD17,FD18],[FD21,FD22,FD23,FD24,FD25,FD26,FD27,FD28],[FD31,FD32,FD33,FD34,FD35,FD36,FD37,FD38],[FD41,FD42,FD43,FD44,FD45,FD46,FD47,FD48],[FD51,FD52,FD53,FD54,FD55,FD56,FD57,FD58],[FD61,FD62,FD63,FD64,FD65,FD66,FD67,FD68],[FD71,FD72,FD73,FD74,FD75,FD76,FD77,FD78],[FD81,FD82,FD83,FD84,FD85,FD86,FD87,FD88]]);

MM := Matrix(8, 8, {(1, 1) = FD11, (1, 2) = 0, (1, 3) = 1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (2, 4) = 1, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = cosh(mu), (3, 6) = sinh(mu), (3, 7) = -cos(mu), (3, 8) = -sin(mu), (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = -sinh(mu), (4, 6) = -cosh(mu), (4, 7) = -sin(mu), (4, 8) = cos(mu), (5, 1) = cosh(mu*x), (5, 2) = sinh(mu*x), (5, 3) = -cos(mu*x), (5, 4) = -sin(mu*x), (5, 5) = -cosh(mu*x), (5, 6) = -sinh(mu*x), (5, 7) = cos(mu*x), (5, 8) = sin(mu*x), (6, 1) = -sinh(mu*x), (6, 2) = -cosh(mu*x), (6, 3) = -sin(mu*x), (6, 4) = cos(mu*x), (6, 5) = sinh(mu*x), (6, 6) = cosh(mu*x), (6, 7) = sin(mu*x), (6, 8) = -cos(mu*x), (7, 1) = (EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3, (7, 2) = (EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3, (7, 3) = (EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3, (7, 4) = (-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3, (7, 5) = cosh(mu*x), (7, 6) = sinh(mu*x), (7, 7) = cos(mu*x), (7, 8) = sin(mu*x), (8, 1) = (-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2, (8, 2) = (-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2, (8, 3) = (EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2, (8, 4) = (EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2, (8, 5) = sinh(mu*x)*mu/L, (8, 6) = cosh(mu*x)*mu/L, (8, 7) = -sin(mu*x)*mu/L, (8, 8) = cos(mu*x)*mu/L})

(35)

Program end

 

NULL

 

``


 

Download Vibration_of_a_cracked_composite_beam.mw
 

restart: with(LinearAlgebra):

# Motion equation (  Vibration of a cracked composite beam using general solution)  Edited by Adjal Yassine #

####################################################################

Motion equation of flexural  vibration in normalized form 

EI*W^(iv)-m*omega^2*W=0;

EI*W^iv-m*omega^2*W = 0

(1)

 

The general solution form of bending vibration equation

W1:=A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x);

A[1]*cosh(mu*x)+A[2]*sinh(mu*x)+A[3]*cos(mu*x)+A[4]*sin(mu*x)

(2)

where

E:=2682e6;L:=0.18;h:=0.004;b:=0.02;rho:=2600;area=b*h;m:=rho*h*b;II:=(h*b^3)/12:

0.2682e10

 

.18

 

0.4e-2

 

0.2e-1

 

2600

 

area = 0.8e-4

 

.20800

(3)

mu:=((m*omega^2*L^4/EI)^(1/4)):

 

 Expression of cross-sectional rotation , the bending moment shear  force and torsional moment  are given as follows respectively

theta1 := (1/L)*(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x));

(A[1]*mu*sinh(mu*x)+A[2]*mu*cosh(mu*x)-A[3]*mu*sin(mu*x)+A[4]*mu*cos(mu*x))/L

(4)

M1:= (EI/L^2)*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x));

EI*(A[1]*mu^2*cosh(mu*x)+A[2]*mu^2*sinh(mu*x)-A[3]*mu^2*cos(mu*x)-A[4]*mu^2*sin(mu*x))/L^2

(5)

S1:= (-EI/L^3)*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x));

-EI*(A[1]*mu^3*sinh(mu*x)+A[2]*mu^3*cosh(mu*x)+A[3]*mu^3*sin(mu*x)-A[4]*mu^3*cos(mu*x))/L^3

(6)

 

W2:=A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x);

A[5]*cosh(mu*x)+A[6]*sinh(mu*x)+A[7]*cos(mu*x)+A[8]*sin(mu*x)

(7)

 

theta2:= (1/L)*(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x));

(A[5]*mu*sinh(mu*x)+A[6]*mu*cosh(mu*x)-A[7]*mu*sin(mu*x)+A[8]*mu*cos(mu*x))/L

(8)

M2:= (EI/L^2)*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x));

EI*(A[5]*mu^2*cosh(mu*x)+A[6]*mu^2*sinh(mu*x)-A[7]*mu^2*cos(mu*x)-A[8]*mu^2*sin(mu*x))/L^2

(9)

S2:= -(EI/L^3)*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x));

-EI*(A[5]*mu^3*sinh(mu*x)+A[6]*mu^3*cosh(mu*x)+A[7]*mu^3*sin(mu*x)-A[8]*mu^3*cos(mu*x))/L^3

(10)

 

The boundary conditions at fixed end W1(0)=Theta(0)=0

X1:=eval(subs(x=0,W1));

A[1]+A[3]

(11)

X2:=eval(subs(x=0,theta1));

(mu*A[2]+mu*A[4])/L

(12)

X2:=collect(X2,mu)*(L/mu);

A[2]+A[4]

(13)

 

The boundary condtions at free end M2(1)=S2(1)=0

X3:=eval(subs(x=1,M2));

EI*(A[5]*mu^2*cosh(mu)+A[6]*mu^2*sinh(mu)-A[7]*mu^2*cos(mu)-A[8]*mu^2*sin(mu))/L^2

(14)

X3:=collect(X3,mu)*(L^2/mu^2/EI);

cosh(mu)*A[5]+sinh(mu)*A[6]-cos(mu)*A[7]-sin(mu)*A[8]

(15)

X4:=eval(subs(x=1,S2));

-EI*(A[5]*mu^3*sinh(mu)+A[6]*mu^3*cosh(mu)+A[7]*mu^3*sin(mu)-A[8]*mu^3*cos(mu))/L^3

(16)

X4:=collect(X4,mu);

-EI*(cosh(mu)*A[6]+sinh(mu)*A[5]-cos(mu)*A[8]+sin(mu)*A[7])*mu^3/L^3

(17)

X4:=collect(X4,EI)*(L^3/mu^3/EI);

-cosh(mu)*A[6]-sinh(mu)*A[5]+cos(mu)*A[8]-sin(mu)*A[7]

(18)

 

The additional boundary conditions at crack location

X5:=combine(M1-M2);

(EI*cosh(mu*x)*mu^2*A[1]-EI*cosh(mu*x)*mu^2*A[5]+EI*sinh(mu*x)*mu^2*A[2]-EI*sinh(mu*x)*mu^2*A[6]-EI*cos(mu*x)*mu^2*A[3]+EI*cos(mu*x)*mu^2*A[7]-EI*sin(mu*x)*mu^2*A[4]+EI*sin(mu*x)*mu^2*A[8])/L^2

(19)

X5:=collect(X5,mu);

(EI*cosh(mu*x)*A[1]-EI*cosh(mu*x)*A[5]+EI*sinh(mu*x)*A[2]-EI*sinh(mu*x)*A[6]-cos(mu*x)*EI*A[3]+A[7]*cos(mu*x)*EI-A[4]*sin(mu*x)*EI+A[8]*sin(mu*x)*EI)*mu^2/L^2

(20)

X5:=collect(X5,EI)*(L^2/mu^2/EI);

A[1]*cosh(mu*x)-A[5]*cosh(mu*x)+A[2]*sinh(mu*x)-A[6]*sinh(mu*x)-A[3]*cos(mu*x)+A[7]*cos(mu*x)-A[4]*sin(mu*x)+A[8]*sin(mu*x)

(21)

X6:=combine(S1-S2);

(-EI*cosh(mu*x)*mu^3*A[2]+EI*cosh(mu*x)*mu^3*A[6]-EI*sinh(mu*x)*mu^3*A[1]+EI*sinh(mu*x)*mu^3*A[5]+EI*cos(mu*x)*mu^3*A[4]-EI*cos(mu*x)*mu^3*A[8]-EI*sin(mu*x)*mu^3*A[3]+EI*sin(mu*x)*mu^3*A[7])/L^3

(22)

X6:=collect(X6,mu);

(-EI*cosh(mu*x)*A[2]+EI*cosh(mu*x)*A[6]-EI*sinh(mu*x)*A[1]+EI*A[5]*sinh(mu*x)+cos(mu*x)*A[4]*EI-cos(mu*x)*A[8]*EI-sin(mu*x)*EI*A[3]+sin(mu*x)*A[7]*EI)*mu^3/L^3

(23)

X6:=collect(X6,EI)*(L^3/mu^3/EI);

-cosh(mu*x)*A[2]+cosh(mu*x)*A[6]-sinh(mu*x)*A[1]+sinh(mu*x)*A[5]+cos(mu*x)*A[4]-cos(mu*x)*A[8]-sin(mu*x)*A[3]+sin(mu*x)*A[7]

(24)

 

X7:=combine(W2-(W1+c8*S1));

(EI*cosh(mu*x)*c8*mu^3*A[2]+EI*sinh(mu*x)*c8*mu^3*A[1]-EI*cos(mu*x)*c8*mu^3*A[4]+EI*sin(mu*x)*c8*mu^3*A[3]-cosh(mu*x)*A[1]*L^3+cosh(mu*x)*A[5]*L^3-sinh(mu*x)*A[2]*L^3+sinh(mu*x)*A[6]*L^3-cos(mu*x)*A[3]*L^3+cos(mu*x)*A[7]*L^3-sin(mu*x)*A[4]*L^3+sin(mu*x)*A[8]*L^3)/L^3

(25)

X8:=combine (theta2-(theta1+c44*M1));

(-EI*cosh(mu*x)*c44*mu^2*A[1]-EI*sinh(mu*x)*c44*mu^2*A[2]+EI*cos(mu*x)*c44*mu^2*A[3]+EI*sin(mu*x)*c44*mu^2*A[4]-L*cosh(mu*x)*mu*A[2]+L*cosh(mu*x)*mu*A[6]-L*sinh(mu*x)*mu*A[1]+L*sinh(mu*x)*mu*A[5]-L*cos(mu*x)*mu*A[4]+L*cos(mu*x)*mu*A[8]+L*sin(mu*x)*mu*A[3]-L*sin(mu*x)*mu*A[7])/L^2

(26)

 

The characteristic matrix function of frequency

FD8:=subs(A[1]=1,A[3]=0,X1);FD12:=subs(A[1]=0,A[3]=0,X1);FD13:=subs(A[1]=0,A[3]=1,X1);FD14:=subs(A[1]=0,A[3]=0,X1);FD15:=subs(A[1]=0,A[3]=0,X1);FD16:=subs(A[1]=0,A[3]=0,X1);FD17:=subs(A[1]=0,A[3]=0,X1);FD18:=subs(A[1]=0,A[3]=0,X1);

1

 

0

 

1

 

0

 

0

 

0

 

0

 

0

(27)

FD21:=subs(A[2]=0,A[4]=0,X2);FD22:=subs(A[2]=1,A[4]=0,X2);FD23:=subs(A[2]=0,A[4]=0,X2);FD24:=subs(A[2]=0,A[4]=1,X2);FD25:=subs(A[2]=0,A[4]=0,X2);FD26:=subs(A[2]=0,A[4]=0,X2);FD27:=subs(A[2]=0,A[4]=0,X2);FD28:=subs(A[2]=0,A[4]=0,X2);

0

 

1

 

0

 

1

 

0

 

0

 

0

 

0

(28)

 

FD31:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD32:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD33:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD34:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X3);FD35:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X3);;FD36:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X3);FD37:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X3);FD38:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X3);

0

 

0

 

0

 

0

 

cosh(mu)

 

sinh(mu)

 

-cos(mu)

 

-sin(mu)

(29)

FD41:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD42:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD43:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD44:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=0,X4);FD45:=subs(A[5]=1,A[6]=0,A[7]=0,A[8]=0,X4);FD46:=subs(A[5]=0,A[6]=1,A[7]=0,A[8]=0,X4);FD47:=subs(A[5]=0,A[6]=0,A[7]=1,A[8]=0,X4);FD48:=subs(A[5]=0,A[6]=0,A[7]=0,A[8]=1,X4);

0

 

0

 

0

 

0

 

-sinh(mu)

 

-cosh(mu)

 

-sin(mu)

 

cos(mu)

(30)

 

FD51:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD52:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD53:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD54:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X5);FD55:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X5);FD56:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X5);FD57:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X5);FD58:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X5);

cosh(mu*x)

 

sinh(mu*x)

 

-cos(mu*x)

 

-sin(mu*x)

 

-cosh(mu*x)

 

-sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(31)

FD61:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD62:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD63:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD64:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X6);FD65:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X6);FD66:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X6);FD67:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X6);FD68:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X6);

-sinh(mu*x)

 

-cosh(mu*x)

 

-sin(mu*x)

 

cos(mu*x)

 

sinh(mu*x)

 

cosh(mu*x)

 

sin(mu*x)

 

-cos(mu*x)

(32)

 

FD71:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD72:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD73:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD74:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X7);FD75:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X7);FD76:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X7);FD77:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X7);FD78:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X7);

(EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3

 

(EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3

 

(EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3

 

(-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3

 

cosh(mu*x)

 

sinh(mu*x)

 

cos(mu*x)

 

sin(mu*x)

(33)

FD81:=subs(A[1]=1,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD82:=subs(A[1]=0,A[2]=1,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD83:=subs(A[1]=0,A[2]=0,A[3]=1,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD84:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=1,A[5]=0,A[6]=0,A[7]=0,A[8]=0,X8);FD85:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=1,A[6]=0,A[7]=0,A[8]=0,X8);FD86:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=1,A[7]=0,A[8]=0,X8);FD87:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=1,A[8]=0,X8);FD88:=subs(A[1]=0,A[2]=0,A[3]=0,A[4]=0,A[5]=0,A[6]=0,A[7]=0,A[8]=1,X8);

(-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2

 

(-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2

 

(EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2

 

(EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2

 

sinh(mu*x)*mu/L

 

cosh(mu*x)*mu/L

 

-sin(mu*x)*mu/L

 

cos(mu*x)*mu/L

(34)

 

MM:=matrix(8,8,[[FD11,FD12,FD13,FD14,FD15,FD16,FD17,FD18],[FD21,FD22,FD23,FD24,FD25,FD26,FD27,FD28],[FD31,FD32,FD33,FD34,FD35,FD36,FD37,FD38],[FD41,FD42,FD43,FD44,FD45,FD46,FD47,FD48],[FD51,FD52,FD53,FD54,FD55,FD56,FD57,FD58],[FD61,FD62,FD63,FD64,FD65,FD66,FD67,FD68],[FD71,FD72,FD73,FD74,FD75,FD76,FD77,FD78],[FD81,FD82,FD83,FD84,FD85,FD86,FD87,FD88]]);

MM := Matrix(8, 8, {(1, 1) = FD11, (1, 2) = 0, (1, 3) = 1, (1, 4) = 0, (1, 5) = 0, (1, 6) = 0, (1, 7) = 0, (1, 8) = 0, (2, 1) = 0, (2, 2) = 1, (2, 3) = 0, (2, 4) = 1, (2, 5) = 0, (2, 6) = 0, (2, 7) = 0, (2, 8) = 0, (3, 1) = 0, (3, 2) = 0, (3, 3) = 0, (3, 4) = 0, (3, 5) = cosh(mu), (3, 6) = sinh(mu), (3, 7) = -cos(mu), (3, 8) = -sin(mu), (4, 1) = 0, (4, 2) = 0, (4, 3) = 0, (4, 4) = 0, (4, 5) = -sinh(mu), (4, 6) = -cosh(mu), (4, 7) = -sin(mu), (4, 8) = cos(mu), (5, 1) = cosh(mu*x), (5, 2) = sinh(mu*x), (5, 3) = -cos(mu*x), (5, 4) = -sin(mu*x), (5, 5) = -cosh(mu*x), (5, 6) = -sinh(mu*x), (5, 7) = cos(mu*x), (5, 8) = sin(mu*x), (6, 1) = -sinh(mu*x), (6, 2) = -cosh(mu*x), (6, 3) = -sin(mu*x), (6, 4) = cos(mu*x), (6, 5) = sinh(mu*x), (6, 6) = cosh(mu*x), (6, 7) = sin(mu*x), (6, 8) = -cos(mu*x), (7, 1) = (EI*sinh(mu*x)*c8*mu^3-cosh(mu*x)*L^3)/L^3, (7, 2) = (EI*cosh(mu*x)*c8*mu^3-sinh(mu*x)*L^3)/L^3, (7, 3) = (EI*sin(mu*x)*c8*mu^3-L^3*cos(mu*x))/L^3, (7, 4) = (-EI*cos(mu*x)*c8*mu^3-sin(mu*x)*L^3)/L^3, (7, 5) = cosh(mu*x), (7, 6) = sinh(mu*x), (7, 7) = cos(mu*x), (7, 8) = sin(mu*x), (8, 1) = (-EI*cosh(mu*x)*c44*mu^2-L*sinh(mu*x)*mu)/L^2, (8, 2) = (-EI*sinh(mu*x)*c44*mu^2-L*cosh(mu*x)*mu)/L^2, (8, 3) = (EI*cos(mu*x)*c44*mu^2+L*sin(mu*x)*mu)/L^2, (8, 4) = (EI*sin(mu*x)*c44*mu^2-L*cos(mu*x)*mu)/L^2, (8, 5) = sinh(mu*x)*mu/L, (8, 6) = cosh(mu*x)*mu/L, (8, 7) = -sin(mu*x)*mu/L, (8, 8) = cos(mu*x)*mu/L})

(35)

Program end

 

NULL

 

``


 

Download Vibration_of_a_cracked_composite_beam.mwVibration_of_a_cracked_composite_beam.mwVibration_of_a_cracked_composite_beam.mw

 

How I can substitute Eqs1-16) into Eq (17)?

Should I use subs rule?

Thanks 

 

 

A few seconds after calling up Help starts zucking araound and the whole computer then freezes. Ctrl-Alt-Delete doesn't work, hard reset required. Very funny. Am I alone?

Hi

I'm trying to export a file using the .mw file. without a lot of success. Can someone help?

For 1 game, the output is between (8) and (9).

For 2 games. the output is after (17).

TEST.mw

 

How to find 
x=log(6) in maple

Hi Everyone, 

 

I am searching for some examples on Maple how to do a Static Analysis of a Truss: Method of Joints. IS there any Maplesoft App or something that has been built already that anyone here can recommend to me. Thank you in advance.  

Express cos(5t)  in terms of powers of cost and sint. cos(6t)=cos(t)^6+acos(t)^4*sin(t)^2*+bcos(t)^2*sin(t)^4+csin(t)^6.

a=?,b=?c=?

how do we find this through maple?

Hey guys, 

Is there any way to remove these imaginary parts of the numbers ?

I tried using the RealDomain package in beginning of code but it starts showing some Float(undefined) numbers and I don't understand why since none of the terms inside the sqrt are negative.

Thanks in advance.

Download Reforço.mw

Dear,

I'm trying to reproduce in Maple an integer linear programming example from Chvatal's book: 

Maximize z= 4x1 + 5x2 + 5x3 + 2x4

Subject to 33x1 + 49x2 +51x3 + 22x4 <= 120,  x= nonnegative integers. 

The optimal solution is: x1 = 2,   x= 1,  x3 = x4 = 0,     z=  13.

 

In Maple I type: 

 LPSolve( 4x1 + 5x2 + 5x3 + 2x4, {33x1 + 49x2 +51x3 + 22x4 <= 120}, maximize, assume ={nonnegative, integer}); 

but Maple gives me back the following error: 

Warning, problem appears to be unbounded. [0, [x=0, x2 =0, x3 =0, x4 =0]]

 

I know the example has the abovementioned definite solution since it comes from the textbook. So, what could I be doing wrongly? 

Many thanks for your help. 

 

As useful as the SetProperty and GetProperty commands are in this package, I am seeking a command that is called by the action of a user input prompt, for example, the prompt window question is something like:

"How many parameters of silly do you want to specifiy for this analysis? (maximum is 10)"

And once the user has entered a natural number between 1 and 10, that number of components of a specified type is generated  in the worksheet.

Is this a real thing already and I can't find it or is there a round about way to do it without an actual command existing?

Hi good afternoon , im looking for maple code of HPM to solve time dependent diffusion reaction , can anybody help me . I didnt get how to solve it by maple . 

I am fairly new to programming i Maple. I am trying to constuct a package which takes two list xlist, ylist, and using the imported Fit commands from the statictics package, tries to do line fitting. 

What am I missing to get this to work? :) 



Mat:=module()
    description "My Package";
    option package;
    Statistics(Fit);
    export LinModel; 
    LinModel :=proc(xliste::list, yliste::list,x::algebraic, $)
        return Fit(xliste,yliste,x)
        end proc; # LinModel 

    end module; #Mat

Does anybody know the inverse of x^5 + 2x^3 ???

Let A be an nxn matrix over Z, the ring of integer numbers. Let m be a positive integer number.

My question: Is there a method in Maple such that we obtain the inverse of A in modulo m.

I know that if m be a prime number then the command "Inverse(A) mod m" returns the desired result. But how about the situation when m is not a prime number.

Thanks for any Help

First 497 498 499 500 501 502 503 Last Page 499 of 2097