Maple Questions and Posts

These are Posts and Questions associated with the product, Maple

Maple does not have full_simplify() command like with Mathematica.

So I figured why not make one? 

Here is a basic implementation. All what it does is blindly tries different simplifications methods I know about and learned from this forum then at the end sorts the result by leaf count and returns to the user the one with smallest leaf count.

I tried it on few inputs.

Advantage of full_simplify() is that user does not have to keep trying themselves. One disadvantage is that this can take longer time. timelimit can be added to this to make it not hang.

Can you see and make more improvement to this function?

May be we all together can make a better full_simplify() in Maple to use. Feel free to edit and change.

#version 1.0  
#increment version number each time when making changes.

full_simplify:=proc(e::anything)
   local result::list;
   local f:=proc(a,b)
      RETURN(MmaTranslator:-Mma:-LeafCount(a)<MmaTranslator:-Mma:-LeafCount(b))
   end proc;

   #add more methods as needed

   result:=[simplify(e),
            simplify(e,size),
            simplify(combine(e)),
            simplify(combine(e),size),
            radnormal(evala( combine(e) )),
            simplify(evala( combine(e) )),
            evala(radnormal( combine(e) )),
            simplify(radnormal( combine(e) )),
            evala(factor(e)),
            simplify(e,ln),
            simplify(e,power),
            simplify(e,RootOf),
            simplify(e,sqrt),
            simplify(e,trig),
            simplify(convert(e,trig)),
            simplify(convert(e,exp)),
            combine(e)
   ];   
   RETURN( sort(result,f)[1]);   

end proc:

worksheet below

 


 

204648

#version 1.0  
#increment version number each time when making changes.

full_simplify:=proc(e::anything)
   local result::list;
   local f:=proc(a,b)
      RETURN(MmaTranslator:-Mma:-LeafCount(a)<MmaTranslator:-Mma:-LeafCount(b))
   end proc;

   #add more methods as needed

   result:=[simplify(e),
            simplify(e,size),
            simplify(combine(e)),
            simplify(combine(e),size),
            radnormal(evala( combine(e) )),
            simplify(evala( combine(e) )),
            evala(radnormal( combine(e) )),
            simplify(radnormal( combine(e) )),
            evala(factor(e)),
            simplify(e,ln),
            simplify(e,power),
            simplify(e,RootOf),
            simplify(e,sqrt),
            simplify(e,trig),
            simplify(convert(e,trig)),
            simplify(convert(e,exp)),
            combine(e)
   ];   
   RETURN( sort(result,f)[1]);   

end proc:

#test cases
T:=[(-192*cos(t)^6 + 288*cos(t)^4 - 912*cos(t)^3 - 108*cos(t)^2 + 684*cos(t) - 54)/(4608*cos(t)^9 - 10368*cos(t)^7 + 6208*cos(t)^6 + 7776*cos(t)^5 - 9312*cos(t)^4 - 2440*cos(t)^3 + 3492*cos(t)^2 + 372*cos(t) - 1169),
(10*(5+sqrt(41)))/(sqrt(70+10*sqrt(41))*sqrt(130+10*sqrt(41))),
((6-4*sqrt(2))*ln(3-2*sqrt(2))+(3-2*sqrt(2))*ln(17-12*sqrt(2))+32-24*sqrt(2))/(48*sqrt(2)-72)*(ln(sqrt(2)+1)+sqrt(2))/3,
(1/2)*exp((1/2)*x)*(cosh((1/2)*x)-cosh((3/2)*x)+sinh((1/2)*x)+sinh((3/2)*x))
];

[(-192*cos(t)^6+288*cos(t)^4-912*cos(t)^3-108*cos(t)^2+684*cos(t)-54)/(4608*cos(t)^9-10368*cos(t)^7+6208*cos(t)^6+7776*cos(t)^5-9312*cos(t)^4-2440*cos(t)^3+3492*cos(t)^2+372*cos(t)-1169), 10*(5+41^(1/2))/((70+10*41^(1/2))^(1/2)*(130+10*41^(1/2))^(1/2)), (1/3)*((6-4*2^(1/2))*ln(3-2*2^(1/2))+(3-2*2^(1/2))*ln(17-12*2^(1/2))+32-24*2^(1/2))*(ln(1+2^(1/2))+2^(1/2))/(48*2^(1/2)-72), (1/2)*exp((1/2)*x)*(cosh((1/2)*x)-cosh((3/2)*x)+sinh((1/2)*x)+sinh((3/2)*x))]

full_simplify~(T)

[-6*(10+cos(6*t)+38*cos(3*t))/(-975+18*cos(9*t)-70*cos(3*t)+194*cos(6*t)), (1/2)*2^(1/2), (1/9)*(ln(1+2^(1/2))+2^(1/2))^2, (1/2)*exp(x)-(1/2)*exp(-x)]

 


 

Download full_simplify.mw

In a homework assignment on differential geometry, a student used Mathematica to calculate the torsion of a trefoil curve.  His result, using identical steps as mine, was significantly simpler than what I had gotten with Maple, although as we see in the attached workseet, they are mathematically equivalent.

Is there a way to coax Maple to reduce its result to something like my student has obtained?

My calculation

T1 := (-192*cos(t)^6 + 288*cos(t)^4 - 912*cos(t)^3 - 108*cos(t)^2 + 684*cos(t) - 54)/(4608*cos(t)^9 - 10368*cos(t)^7 + 6208*cos(t)^6 + 7776*cos(t)^5 - 9312*cos(t)^4 - 2440*cos(t)^3 + 3492*cos(t)^2 + 372*cos(t) - 1169);

(-192*cos(t)^6+288*cos(t)^4-912*cos(t)^3-108*cos(t)^2+684*cos(t)-54)/(4608*cos(t)^9-10368*cos(t)^7+6208*cos(t)^6+7776*cos(t)^5-9312*cos(t)^4-2440*cos(t)^3+3492*cos(t)^2+372*cos(t)-1169)

The student's calculation

T2 := 6*(10+38*cos(3*t)+cos(6*t))/(975+70*cos(3*t)-194*cos(6*t) -18*cos(9*t));

6*(10+38*cos(3*t)+cos(6*t))/(975+70*cos(3*t)-194*cos(6*t)-18*cos(9*t))

simplify(T1 - T2);

0

 

Download torsion2.mw

Is it possible to simplify the following relatively simple expression  (10*(5+sqrt(41)))/(sqrt(70+10*sqrt(41))*sqrt(130+10*sqrt(41)))  using 1-2 standard commands  simplify , combine, radnormal  and so on?   I was unable to do this in Maple 2018. Maybe newer versions of Maple will be able to handle this. I managed to simplify it in 3 steps:

expr:=(10*(5+sqrt(41)))/(sqrt(70+10*sqrt(41))*sqrt(130+10*sqrt(41)));
sqrt(simplify(expr^2));

                              

 

WHY DOES THE TRANSPOSE OF Vt DETERMINED BY THE FUNCTION SingularValues NOT AGREE WITH THE evectors CALCULATED BY THE FUNCTION Eigenvectors?

 

restart:
with(LinearAlgebra):

X := Matrix([[8.79,9.93,9.83,5.45,3.16],
           [6.11,6.91,5.04,-0.27,7.98],
           [-9.15,-7.93,4.86,4.85,3.01],
           [9.57,1.64,8.83,0.74,5.80],
           [-3.49,4.02,9.80,10.00,4.27],
           [9.84,0.15,-8.99,-6.02,-5.31]],
           datatype=float[8],order=Fortran_order);

Matrix(6, 5, {(1, 1) = 8.79, (1, 2) = 9.93, (1, 3) = 9.83, (1, 4) = 5.45, (1, 5) = 3.16, (2, 1) = 6.11, (2, 2) = 6.91, (2, 3) = 5.04, (2, 4) = -.27, (2, 5) = 7.98, (3, 1) = -9.15, (3, 2) = -7.93, (3, 3) = 4.86, (3, 4) = 4.85, (3, 5) = 3.01, (4, 1) = 9.57, (4, 2) = 1.64, (4, 3) = 8.83, (4, 4) = .74, (4, 5) = 5.8, (5, 1) = -3.49, (5, 2) = 4.02, (5, 3) = 9.8, (5, 4) = 10.0, (5, 5) = 4.27, (6, 1) = 9.84, (6, 2) = .15, (6, 3) = -8.99, (6, 4) = -6.02, (6, 5) = -5.31})

(1)

U,S,Vt:= SingularValues(X, output = ['U', 'S', 'Vt'],thin=true)

U, S, Vt := Matrix(6, 5, {(1, 1) = -.591142376412437, (1, 2) = .263167814714055, (1, 3) = .355430173862827, (1, 4) = .314264362726927, (1, 5) = .229938315364748, (2, 1) = -.397566794202426, (2, 2) = .243799027926330, (2, 3) = -.222390000685446, (2, 4) = -.753466150953458, (2, 5) = -.363589686697497, (3, 1) = -0.334789690624459e-1, (3, 2) = -.600272580693583, (3, 3) = -.450839268922308, (3, 4) = .233449657244714, (3, 5) = -.305475732747932, (4, 1) = -.429706903137018, (4, 2) = .236166806281125, (4, 3) = -.685862863873811, (4, 4) = .331860018200310, (4, 5) = .164927634884511, (5, 1) = -.469747921566658, (5, 2) = -.350891398883703, (5, 3) = .387444603099673, (5, 4) = .158735559582156, (5, 5) = -.518257437353535, (6, 1) = .293358758464403, (6, 2) = .576262119133891, (6, 3) = -0.208529179808710e-1, (6, 4) = .379077667060160, (6, 5) = -.652551600592398}), Vector(6, {(1) = 27.4687324182218, (2) = 22.6431850097747, (3) = 8.55838822848258, (4) = 5.98572320151213, (5) = 2.01489965871576, (6) = 0.}), Matrix(5, 5, {(1, 1) = -.251382792720498, (1, 2) = -.396845551776930, (1, 3) = -.692151007470363, (1, 4) = -.366170444772230, (1, 5) = -.407635238653352, (2, 1) = .814836686086339, (2, 2) = .358661500188002, (2, 3) = -.248888011159285, (2, 4) = -.368593537944618, (2, 5) = -0.979625692668875e-1, (3, 1) = -.260618505584221, (3, 2) = .700768209407253, (3, 3) = -.220811446720437, (3, 4) = .385938483188542, (3, 5) = -.493250142851024, (4, 1) = .396723777130597, (4, 2) = -.450711241216643, (4, 3) = .251321149693754, (4, 4) = .434248601436671, (4, 5) = -.622684072035804, (5, 1) = -.218027763686546, (5, 2) = .140209949871121, (5, 3) = .589119449239943, (5, 4) = -.626528250364817, (5, 5) = -.439551692342332})

(2)

SDM:= DiagonalMatrix(S[1..5],5,5)

Matrix(5, 5, {(1, 1) = 27.46873241822184, (1, 2) = 0., (1, 3) = 0., (1, 4) = 0., (1, 5) = 0., (2, 1) = 0., (2, 2) = 22.643185009774694, (2, 3) = 0., (2, 4) = 0., (2, 5) = 0., (3, 1) = 0., (3, 2) = 0., (3, 3) = 8.558388228482578, (3, 4) = 0., (3, 5) = 0., (4, 1) = 0., (4, 2) = 0., (4, 3) = 0., (4, 4) = 5.985723201512132, (4, 5) = 0., (5, 1) = 0., (5, 2) = 0., (5, 3) = 0., (5, 4) = 0., (5, 5) = 2.014899658715757})

(3)

THIS EQUALS TO ORIGINAL X MATRIX

 

U.SDM.Vt

Matrix(6, 5, {(1, 1) = 8.789999999999997, (1, 2) = 9.93, (1, 3) = 9.829999999999995, (1, 4) = 5.449999999999993, (1, 5) = 3.159999999999998, (2, 1) = 6.1099999999999985, (2, 2) = 6.9099999999999975, (2, 3) = 5.0399999999999965, (2, 4) = -.26999999999999996, (2, 5) = 7.980000000000001, (3, 1) = -9.14999999999999, (3, 2) = -7.930000000000001, (3, 3) = 4.859999999999987, (3, 4) = 4.849999999999992, (3, 5) = 3.009999999999995, (4, 1) = 9.569999999999997, (4, 2) = 1.6399999999999977, (4, 3) = 8.82999999999999, (4, 4) = .7399999999999956, (4, 5) = 5.799999999999994, (5, 1) = -3.489999999999992, (5, 2) = 4.019999999999998, (5, 3) = 9.799999999999985, (5, 4) = 9.999999999999988, (5, 5) = 4.269999999999993, (6, 1) = 9.83999999999999, (6, 2) = .15000000000000033, (6, 3) = -8.989999999999982, (6, 4) = -6.0199999999999925, (6, 5) = -5.309999999999993})

(4)

X -~ U.SDM.Vt

Matrix(6, 5, {(1, 1) = 0.1776356839e-14, (1, 2) = 0., (1, 3) = 0.5329070518e-14, (1, 4) = 0.7105427358e-14, (1, 5) = 0.2220446049e-14, (2, 1) = 0.1776356839e-14, (2, 2) = 0.2664535259e-14, (2, 3) = 0.3552713679e-14, (2, 4) = -0.5551115123e-16, (2, 5) = -0.8881784197e-15, (3, 1) = -0.1065814104e-13, (3, 2) = 0.8881784197e-15, (3, 3) = 0.1332267630e-13, (3, 4) = 0.7993605777e-14, (3, 5) = 0.4884981308e-14, (4, 1) = 0.3552713679e-14, (4, 2) = 0.2220446049e-14, (4, 3) = 0.1065814104e-13, (4, 4) = 0.4440892099e-14, (4, 5) = 0.6217248938e-14, (5, 1) = -0.7993605777e-14, (5, 2) = 0.1776356839e-14, (5, 3) = 0.1598721155e-13, (5, 4) = 0.1243449788e-13, (5, 5) = 0.6217248938e-14, (6, 1) = 0.1065814104e-13, (6, 2) = -0.3330669074e-15, (6, 3) = -0.1776356839e-13, (6, 4) = -0.7105427358e-14, (6, 5) = -0.6217248938e-14})

(5)

EIGENVALUES

 

S*~S

Vector(6, {(1) = 754.5312606638714, (2) = 512.7138273868854, (3) = 73.24600906942915, (4) = 35.82888224512065, (5) = 4.059820634692874, (6) = 0.})

(6)

EIGENVECTORS

 

Transpose(Vt)

Matrix(5, 5, {(1, 1) = -.2513827927204978, (1, 2) = .8148366860863387, (1, 3) = -.2606185055842209, (1, 4) = .39672377713059703, (1, 5) = -.21802776368654583, (2, 1) = -.3968455517769299, (2, 2) = .35866150018800186, (2, 3) = .7007682094072526, (2, 4) = -.45071124121664313, (2, 5) = .1402099498711206, (3, 1) = -.6921510074703628, (3, 2) = -.2488880111592855, (3, 3) = -.22081144672043732, (3, 4) = .2513211496937536, (3, 5) = .5891194492399427, (4, 1) = -.3661704447722298, (4, 2) = -.3685935379446182, (4, 3) = .3859384831885419, (4, 4) = .434248601436671, (4, 5) = -.6265282503648171, (5, 1) = -.4076352386533523, (5, 2) = -0.979625692668875e-1, (5, 3) = -.4932501428510237, (5, 4) = -.6226840720358041, (5, 5) = -.4395516923423325})

(7)

COMPARE LINE (6) AND THE evalues OF  LINE  (8), IN AGREEMENT.

 

COMPARE LINE (7) AND THE evectors OF LINE (8), NOT IN AGREEMENT.

 

evalues, evectors:= Eigenvectors(Transpose(X).X)

evalues, evectors := Vector(5, {(1) = 754.531260663872+0.*I, (2) = 512.713827386885+0.*I, (3) = 73.2460090694292+0.*I, (4) = 35.8288822451207+0.*I, (5) = 4.05982063469289+0.*I}), Matrix(5, 5, {(1, 1) = -.251382792720496+0.*I, (1, 2) = -.814836686086340+0.*I, (1, 3) = -.260618505584220+0.*I, (1, 4) = .396723777130597+0.*I, (1, 5) = .218027763686546+0.*I, (2, 1) = -.396845551776929+0.*I, (2, 2) = -.358661500188003+0.*I, (2, 3) = .700768209407252+0.*I, (2, 4) = -.450711241216643+0.*I, (2, 5) = -.140209949871121+0.*I, (3, 1) = -.692151007470364+0.*I, (3, 2) = .248888011159284+0.*I, (3, 3) = -.220811446720437+0.*I, (3, 4) = .251321149693753+0.*I, (3, 5) = -.589119449239943+0.*I, (4, 1) = -.366170444772231+0.*I, (4, 2) = .368593537944617+0.*I, (4, 3) = .385938483188543+0.*I, (4, 4) = .434248601436671+0.*I, (4, 5) = .626528250364817+0.*I, (5, 1) = -.407635238653353+0.*I, (5, 2) = 0.979625692668865e-1+0.*I, (5, 3) = -.493250142851024+0.*I, (5, 4) = -.622684072035804+0.*I, (5, 5) = .439551692342333+0.*I})

(8)

sdm:= DiagonalMatrix(evalues[1..5],5,5)

Matrix(5, 5, {(1, 1) = 754.5312606638715+0.*I, (1, 2) = 0.*I, (1, 3) = 0.*I, (1, 4) = 0.*I, (1, 5) = 0.*I, (2, 1) = 0.*I, (2, 2) = 512.7138273868852+0.*I, (2, 3) = 0.*I, (2, 4) = 0.*I, (2, 5) = 0.*I, (3, 1) = 0.*I, (3, 2) = 0.*I, (3, 3) = 73.2460090694292+0.*I, (3, 4) = 0.*I, (3, 5) = 0.*I, (4, 1) = 0.*I, (4, 2) = 0.*I, (4, 3) = 0.*I, (4, 4) = 35.82888224512066+0.*I, (4, 5) = 0.*I, (5, 1) = 0.*I, (5, 2) = 0.*I, (5, 3) = 0.*I, (5, 4) = 0.*I, (5, 5) = 4.0598206346928905+0.*I})

(9)

THIS SHOULD EQUAL TO THE ORIGINAL X MATRIX??

 

U.sdm.Transpose(evectors)

Matrix(6, 5, {(1, 1) = 0.6552908001635141e-1+0.*I, (1, 2) = 141.65095872384822+0.*I, (1, 3) = 338.83755003799257+0.*I, (1, 4) = 228.5810832324622+0.*I, (1, 5) = 175.59568314998398+0.*I, (2, 1) = -33.23139659260195+0.*I, (2, 2) = 75.17135144556929+0.*I, (2, 3) = 236.421687561631+0.*I, (2, 4) = 136.98207278415265+0.*I, (2, 5) = 158.72195870452097+0.*I, (3, 1) = 268.7849531650388+0.*I, (3, 2) = 93.67237457619457+0.*I, (3, 3) = -48.99100376421241+0.*I, (3, 4) = -114.08088481922744+0.*I, (3, 5) = -9.317711776596651+0.*I, (4, 1) = .7955765643196264+0.*I, (4, 2) = 44.582065761106776+0.*I, (4, 3) = 268.23773062231106+0.*I, (4, 4) = 149.54848119026994+0.*I, (4, 5) = 161.6981236670314+0.*I, (5, 1) = 230.09623253311864+0.*I, (5, 2) = 222.80201293072588+0.*I, (5, 3) = 196.9514995697131+0.*I, (5, 4) = 75.57668964466434+0.*I, (5, 5) = 108.39382140065305+0.*I, (6, 1) = -291.18409102891843+0.*I, (6, 2) = -200.6307865795955+0.*I, (6, 3) = -74.35923030344051+0.*I, (6, 4) = 31.501149679670085+0.*I, (6, 5) = -70.1539507795088+0.*I})

(10)

X -~ U.sdm.Transpose(evectors)

Matrix(6, 5, {(1, 1) = 8.724470919983649+0.*I, (1, 2) = -131.7209587238482+0.*I, (1, 3) = -329.0075500379926+0.*I, (1, 4) = -223.1310832324622+0.*I, (1, 5) = -172.435683149984+0.*I, (2, 1) = 39.34139659260195+0.*I, (2, 2) = -68.26135144556929+0.*I, (2, 3) = -231.381687561631+0.*I, (2, 4) = -137.25207278415266+0.*I, (2, 5) = -150.74195870452098+0.*I, (3, 1) = -277.9349531650388+0.*I, (3, 2) = -101.60237457619456+0.*I, (3, 3) = 53.85100376421241+0.*I, (3, 4) = 118.93088481922743+0.*I, (3, 5) = 12.32771177659665+0.*I, (4, 1) = 8.774423435680374+0.*I, (4, 2) = -42.942065761106775+0.*I, (4, 3) = -259.4077306223111+0.*I, (4, 4) = -148.80848119026993+0.*I, (4, 5) = -155.8981236670314+0.*I, (5, 1) = -233.58623253311865+0.*I, (5, 2) = -218.78201293072587+0.*I, (5, 3) = -187.15149956971308+0.*I, (5, 4) = -65.57668964466434+0.*I, (5, 5) = -104.12382140065306+0.*I, (6, 1) = 301.0240910289184+0.*I, (6, 2) = 200.7807865795955+0.*I, (6, 3) = 65.36923030344052+0.*I, (6, 4) = -37.52114967967009+0.*I, (6, 5) = 64.8439507795088+0.*I})

(11)

 

Download SVD_test.mw

One can use the "|" character to combine vectors to create a matrix. Is there a slick way to separate a matrix into a list of column vectors besides using the LinearAlgebra:-Column procedure? 

I asked maple to solve a basic log inequality.
solve(log[2](0.7*x)<=log[3](3*x-1));


This is what happened.

Here is a link to the document to replicate this behavior.

log_inequality.mw

I know there is a solution , if you look at the [graph](https://www.desmos.com/calculator/3n7uzwrak4).

I also tried fsolve, but you have to narrow down the solution interval to look for a solution, and use an equality instead of an inequality.

Hi. Can maple compute right and left eigenvectors of a matrix?

Is there a simple command to convert the metric tensor (written in tensor product notation for the differential geometry package) to a matrix form accepted by the physics package?

Is there something similar for wedge products as well? 

Please Help me to solve this problem 
 

Download ode_Plots_error.mw

I just installed Maple 2024.0 and I discovered a problem in that the "Manage Style Sets" under the "Format" menu DOESN'T WORK!!! Type the following to understand how this feature works and see if you have the same problem:

>?workshhet,documenting,styles

Follow the instructions.  They are pretty simple.  Find a worksheet that has the styles you like and open it up and then save this Style Set in Maple 2024.0.  Then close it.  Open a new worksheet.  Go to "Format" and then click on "Managing Style Sets" and then click on the Style Set file name you saved previously and you will find that it does not set the style set you saved previously.  

 

Another problem you will find is that it doesn't save your Style Set file where it is supposed to save it.  It needs to be saved in a Maple 2024.0 created folder known as "data" and then in a folder under "data" called "stylesets".  I had to manually go find my Style Set file and copy and paste it there.  

Please check this out and see if I am wrong.  I use the "Format" "Manage Style Sets" option a lot when I download files from this blog and ".mw"  have fonts size 12 and they default to the nearly impossible to read font!  After I have applied the "Manage Style Sets" I can see what I have! But for some reason in Maple 2024.0 this feature was not tested or something has changed in Maple 2024.0 to break this feature!

AllGraphs is a new function in Maple 2024. Good things!

However, it seems that most of its functionalities are already provided by NonIsomorphicGraphs, and its speed even lags behind that of NonIsomorphicGraphs 

 

I'm curious about what truly sets this function apart from existing ones. It generates isomorphic graphs if nonisomorphic=falseBut I donot know what its application is. Supporting directed graphs is a new thing, but its speed is not well.

iterator := GraphTheory[AllGraphs](vertices = 6, edges =6..7, connected, nonisomorphic)
s:=[seq(p, p = iterator)]:
nops(s)

Note that this function is suitable for generating non-isomorphic connected graphs with 6 vertices and either 6 or 7 edges. It doesn't hold an advantage in terms of speed, andNonIsomorphicGraphs also provides an iteration option.

Hello,

How to  outer loop index setup as the upper value of the inner loop index?

I have been trying Maple 2024 and found this strange result. 

Calling solve(identity...  on same input in Maple 2024 gives very large and complex output compare with Maple 2023.2.1.

This was causing problem, until I found that simplifying the solution now gives same output as Maple 2023.2.1

But why is this now needed in Maple 2024? i.e. why is calling simplify needed when in Maple 2023 the simpler solution was returned automatically?

I changed my code to call simplify now on result of solve(identity...  but I am just curious what happened to cause this?

Below are two worksheets, one from Maple 2024 and one from Maple 2023.2 and you see the huge difference in result.


 

56056

interface(version);

`Standard Worksheet Interface, Maple 2023.2, Windows 10, November 24 2023 Build ID 1762575`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1693. The version installed in this computer is 1672 created 2024, February 7, 18:34 hours Pacific Time, found in the directory C:\Users\Owner\maple\toolbox\2023\Physics Updates\lib\`

restart;

238012

trial_solution_constants:=[A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8]];
eq:=-2*A[1]*sin(x)+2*A[2]*cos(x)-4*A[2]*x*sin(x)+2*A[3]*sin(x)+4*A[3]*x*cos(x)+2*A[4]*cos(x)-6*A[5]*sin(3*x)-8*A[5]*x*cos(3*x)+6*A[6]*cos(3*x)-8*A[6]*x*sin(3*x)-8*A[7]*cos(3*x)-8*A[8]*sin(3*x) = x*cos(x)^3;
solve(identity(eq,x),trial_solution_constants)

[A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8]]

-2*A[1]*sin(x)+2*A[2]*cos(x)-4*A[2]*x*sin(x)+2*A[3]*sin(x)+4*A[3]*x*cos(x)+2*A[4]*cos(x)-6*A[5]*sin(3*x)-8*A[5]*x*cos(3*x)+6*A[6]*cos(3*x)-8*A[6]*x*sin(3*x)-8*A[7]*cos(3*x)-8*A[8]*sin(3*x) = x*cos(x)^3

[[A[1] = 3/16, A[2] = 0, A[3] = 3/16, A[4] = 0, A[5] = -1/32, A[6] = 0, A[7] = 0, A[8] = 3/128]]

 


 

Download solve_identity_march_11_2024_maple_2023.mw

 


 

56056

interface(version);

`Standard Worksheet Interface, Maple 2024.0, Windows 10, March 01 2024 Build ID 1794891`

Physics:-Version();

`The "Physics Updates" version in the MapleCloud is 1693 and is the same as the version installed in this computer, created 2024, March 7, 17:27 hours Pacific Time.`

restart;

56944

trial_solution_constants:=[A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8]];
eq:=-2*A[1]*sin(x)+2*A[2]*cos(x)-4*A[2]*x*sin(x)+2*A[3]*sin(x)+4*A[3]*x*cos(x)+2*A[4]*cos(x)-6*A[5]*sin(3*x)-8*A[5]*x*cos(3*x)+6*A[6]*cos(3*x)-8*A[6]*x*sin(3*x)-8*A[7]*cos(3*x)-8*A[8]*sin(3*x) = x*cos(x)^3;
solve(identity(eq,x),trial_solution_constants)

[A[1], A[2], A[3], A[4], A[5], A[6], A[7], A[8]]

-2*A[1]*sin(x)+2*A[2]*cos(x)-4*A[2]*x*sin(x)+2*A[3]*sin(x)+4*A[3]*x*cos(x)+2*A[4]*cos(x)-6*A[5]*sin(3*x)-8*A[5]*x*cos(3*x)+6*A[6]*cos(3*x)-8*A[6]*x*sin(3*x)-8*A[7]*cos(3*x)-8*A[8]*sin(3*x) = x*cos(x)^3

[[A[1] = -(3/16)*(648*cos(3)*sin(1)^3+972*cos(3)*sin(1)^2*cos(1)+432*sin(3)*sin(1)^3+648*sin(3)*sin(1)^2*cos(1)+2268*sin(1)^4+1296*sin(1)^3*cos(1)+324*sin(3)*cos(3)-108*sin(1)*cos(3)-585*cos(3)*cos(1)-133*sin(3)^2-153*sin(3)*sin(1)-48*sin(3)*cos(1)-2025*sin(1)^2+225)/(108*sin(1)*cos(3)+99*cos(3)*cos(1)-2*sin(3)^2+153*sin(3)*sin(1)-276*sin(3)*cos(1)-162*sin(1)^2+261), A[2] = (9/32)*(-48*cos(3)*sin(1)^3-72*cos(3)*sin(1)^2*cos(1)+88*sin(3)*sin(1)^3+132*sin(3)*sin(1)^2*cos(1)+864*sin(1)^4-108*sin(1)^3*cos(1)+21*sin(3)*cos(3)+117*sin(1)*cos(3)-144*cos(3)*cos(1)+40*sin(3)^2-12*sin(3)*sin(1)-141*sin(3)*cos(1)-972*sin(1)^2+243*cos(1)*sin(1)+144)/(108*sin(1)*cos(3)+99*cos(3)*cos(1)-2*sin(3)^2+153*sin(3)*sin(1)-276*sin(3)*cos(1)-162*sin(1)^2+261), A[3] = -(3/32)*(648*cos(3)*sin(1)^3+972*cos(3)*sin(1)^2*cos(1)+432*sin(3)*sin(1)^3+648*sin(3)*sin(1)^2*cos(1)+2268*sin(1)^4+1296*sin(1)^3*cos(1)+324*sin(3)*cos(3)-216*sin(1)*cos(3)-684*cos(3)*cos(1)-131*sin(3)^2-306*sin(3)*sin(1)+228*sin(3)*cos(1)-1863*sin(1)^2-36)/(108*sin(1)*cos(3)+99*cos(3)*cos(1)-2*sin(3)^2+153*sin(3)*sin(1)-276*sin(3)*cos(1)-162*sin(1)^2+261), A[4] = 0, A[5] = (1/64)*(216*cos(3)*sin(1)^3+324*cos(3)*sin(1)^2*cos(1)+144*sin(3)*sin(1)^3+216*sin(3)*sin(1)^2*cos(1)+756*sin(1)^4+432*sin(1)^3*cos(1)+41*cos(3)^2+108*sin(3)*cos(3)-216*sin(1)*cos(3)-360*cos(3)*cos(1)-306*sin(3)*sin(1)+444*sin(3)*cos(1)-405*sin(1)^2-401)/(2*cos(3)^2+108*sin(1)*cos(3)+99*cos(3)*cos(1)+153*sin(3)*sin(1)-276*sin(3)*cos(1)-162*sin(1)^2+259), A[6] = -(3/64)*(48*cos(3)*sin(1)^3+72*cos(3)*sin(1)^2*cos(1)-88*sin(3)*sin(1)^3-132*sin(3)*sin(1)^2*cos(1)-864*sin(1)^4+108*sin(1)^3*cos(1)+40*cos(3)^2-21*sin(3)*cos(3)-117*sin(1)*cos(3)+144*cos(3)*cos(1)+12*sin(3)*sin(1)+141*sin(3)*cos(1)+972*sin(1)^2-243*cos(1)*sin(1)-184)/(2*cos(3)^2+108*sin(1)*cos(3)+99*cos(3)*cos(1)+153*sin(3)*sin(1)-276*sin(3)*cos(1)-162*sin(1)^2+259), A[7] = (27/256)*(-48*cos(3)*sin(1)^3-72*cos(3)*sin(1)^2*cos(1)+88*sin(3)*sin(1)^3+132*sin(3)*sin(1)^2*cos(1)+864*sin(1)^4-108*sin(1)^3*cos(1)+21*sin(3)*cos(3)+117*sin(1)*cos(3)-144*cos(3)*cos(1)+40*sin(3)^2-12*sin(3)*sin(1)-141*sin(3)*cos(1)-972*sin(1)^2+243*cos(1)*sin(1)+144)/(108*sin(1)*cos(3)+99*cos(3)*cos(1)-2*sin(3)^2+153*sin(3)*sin(1)-276*sin(3)*cos(1)-162*sin(1)^2+261), A[8] = -(3/256)*(744*cos(3)*sin(1)^3+1116*cos(3)*sin(1)^2*cos(1)+496*sin(3)*sin(1)^3+744*sin(3)*sin(1)^2*cos(1)+2604*sin(1)^4+1488*sin(1)^3*cos(1)+372*sin(3)*cos(3)-216*sin(1)*cos(3)-756*cos(3)*cos(1)-151*sin(3)^2-306*sin(3)*sin(1)+180*sin(3)*cos(1)-2187*sin(1)^2+36)/(108*sin(1)*cos(3)+99*cos(3)*cos(1)-2*sin(3)^2+153*sin(3)*sin(1)-276*sin(3)*cos(1)-162*sin(1)^2+261)]]

simplify(%);

[[A[1] = 3/16, A[2] = 0, A[3] = 3/16, A[4] = 0, A[5] = -1/32, A[6] = 0, A[7] = 0, A[8] = 3/128]]

 


 

Download solve_identity_march_11_2024.mw

 

This post is to help anyone who is just as frustrated about typesetting in plots
as I was before I solved my problem. (Note: the technique works with the version

2020 and newer and may work with earlier versions.)

 

Why? Because there is no obvious help in Maple showing what works. (And if folks

can improve what I have posted,  please do so. At least when someone executes

a search for this type of problem, they might see the best approach.)

Goal: typeset a name of a function in any text of a plot.

Approach: According to help, '?plot, typesetting',  one should use the
option(procedure?) typeset.   For example:

"restart;   plots:-setoptions(size = [400, 200]):    `f__1`(x) :=cos(x)*(e)^(-(x^(2))/(4)) :    p1 := plot(`f__1`(x), x = -5..5,                         legend = typeset("function ", `f__1`(x) )  );"

 

 

However, what I want in the legend is the expression "`f__1`(x),"not the evaluated

expression. Entering the name with single quotes around the expression leads to this:

 

p1 := plot(f__1(x), x = -5 .. 5, legend = typeset("function ", 'f__1(x)'))

 

 

which is great, except that when I wish to redisplay the plot

 

plots:-display(p1)

 

the expression f__1(x)is evaluated.

 

According to the code completion capability of Maple, the procedure

"Typesetting:-Typeset" exists, and it does not evaluate the function:

 

p1 := plot(f__1(x), x = -5 .. 5, legend = Typesetting:-Typeset(f__1(x))); plots:-display(p1)

 

 

except there is no help regarding this procedure.

 

It appears that the procedure operates only on one item.

 

Solution: Hence, the ultimate solution for my problem is to still use the typeset 

option, but Typeset any expression.

 

p1 := plot(f__1(x), x = -5 .. 5, legend = typeset("function ", Typesetting:-Typeset(f__1(x)))); plots:-display(p1)

 

 

Again, if you can contribute to this post, I would appreciate it.


 

Download MaplePrimies_-_Typesetting_in_plots.mw

Could someone help me fix this loop.

It is printing the expressions without evaluating but it is evaluating it before appending it to the list.
I do not want to apriori define the functional dependence i.e. f(t).

lis := [f1, f2, f3, f4, f5, f6, f7, f8, f9, f10];
L := [];
for i in lis do
    print(subs(f = i, 'diff(f, t)'));
    L := [op(L), subs(f = i, 'diff(f, t)')];
end do;
print(L);

3 4 5 6 7 8 9 Last Page 5 of 2097