Question: NUMERICAL SOLUTION FOR A ROBOT PLANAR RR DYNAMIC MODEL - HELP ME

This is my situation, please help me.

Cargando  MathematicalFunctions

Cargando  PDEtools

> with(DEtools);
> restart; m[1] := 1; m[2] := 1; l[1] := 1; l[2] := 1; g := 9.8; w := 1; ec1 := (((1/3)*m[1]+m[2]+w)*l[1]^2+((1/3)*m[2]+w)*l[2]^2+(2*((1/2)*m[2]+w))*l[1]*l[2]*cos(beta(t)))*(diff(alpha(t), t, t))+(((1/3)*m[2]+w)*l[2]^2+((1/2)*m[2]+w)*cos(beta(t)))*(diff(beta(t), t, t))-(2*((1/2)*m[2]+w))*l[1]*l[2]*sin(beta(t))*(diff(alpha(t), t))*(diff(beta(t), t))-((1/2)*m[2]+w)*l[1]*l[2]*sin(beta(t))*(diff(beta(t), t, t))^2+((1/2)*m[1]+m[2]+w)*g*l[1]*cos(alpha(t))+((1/2)*m[2]+w)*g*l[2]*cos(alpha(t)+beta(t))-tau[1] = 0;
                      
> ec2 := (((1/3)*m[2]+w)*l[2]^2+((1/2)*m[2]+w)*l[1]*l[2]*cos(beta(t)))*(diff(alpha(t), t, t))+((1/3)*m[2]+w)*l[2]^2*(diff(beta(t), t, t))+((1/2)*m[2]+w)*l[1]*l[2]*sin(beta(t))*(diff(alpha(t), t))^2+((1/2)*m[2]+w)*g*l[2]*cos(alpha(t)+beta(t))-tau[2] = 0;


> dsn1 := dsolve(dsys, numeric);

Warning, The use of global variables in numerical ODE problems is deprecated, and will be removed in a future release. Use the 'parameters' argument instead (see ?dsolve,numeric,parameters)
Error, (in DEtools/convertsys) unable to convert to an explicit first-order system

Please Wait...