Question: problem with solution of differential algebraic system of equations

by trying to solve the following system of equations:
sys := {V[0]*(diff(P[0](t), t))/(k[B]*T0) = -z*C*A[1]*P[0](t)*(P[1](t)/P[0](t))^(1/gamma)*sqrt(2*gamma*(1-(P[1](t)/P[0](t))^((gamma-1)/gamma))/((gamma-1)*k[B]*T0*m0)), V[1]*(diff(P[1](t), t))/(k[B]*mu[T][1](t)) = z*C*A[1]*P[0](t)*(P[1](t)/P[0](t))^(1/gamma)*sqrt(2*gamma*(1-(P[1](t)/P[0](t))^((gamma-1)/gamma))/((gamma-1)*k[B]*T0*m0))-C*A[2]*P[1](t)*(P[2](t)/P[1](t))^(1/gamma)*sqrt(2*gamma*(1-(P[2](t)/P[1](t))^((gamma-1)/gamma))/((gamma-1)*k[B]*mu[T][1](t)*m0)), (V[3]-V[2](t))*((P[1](t)/P[3](t))^((gamma-1)/gamma)*(diff(P[3](t), t))/gamma+(gamma-1)*(P[3](t)/P[1](t))^(1/gamma)*(diff(P[1](t), t))/gamma)/(k[B]*mu[T][1](t)) = r*C*A[2]*P[1](t)*(P[2](t)/P[1](t))^(1/gamma)*sqrt(2*gamma*(1-(P[2](t)/P[1](t))^((gamma-1)/gamma))/((gamma-1)*k[B]*mu[T][1](t)*m0))-P[3](t)*U[B]*ln(1+kappa[2](t)/(T1*(P[2](t)/P[1](t))^((gamma-1)/gamma)))/(k[B]*kappa[2](t)), V[2](t)*((P[1](t)/P[2](t))^((gamma-1)/gamma)*(diff(P[2](t), t))/gamma+(gamma-1)*(P[2](t)/P[1](t))^(1/gamma)*(diff(P[1](t), t))/gamma)/(k[B]*mu[T][1](t)) = (1-r)*C*A[2]*P[1](t)*(P[2](t)/P[1](t))^(1/gamma)*sqrt(2*gamma*(1-(P[2](t)/P[1](t))^((gamma-1)/gamma))/((gamma-1)*k[B]*mu[T][1](t)*m0))-P[2](t)*U[A]*ln(1+kappa[2](t)/(T1*(P[2](t)/P[1](t))^((gamma-1)/gamma)))/(k[B]*kappa[2](t)), L[0](t) = V[s][2](t)*tp, P[0](0) = P0, P[1](0) = P1, P[2](0) = P2, P[3](0) = P2, V[2](t) = (1/3)*L[0](t)*(A[2]+sqrt(A[2]*A[e])+A[e]), kappa[1](t) = m0*V[s][1](t)^2/(2*k[B]), kappa[2](t) = m0*V[s][2](t)^2/(2*k[B]), V[s][1](t) = sqrt(gamma*k[B]*T0/m0)*((sqrt((2*(1-(P[1](t)/P[0](t))^((gamma-1)/gamma)))/(gamma-1))+sqrt(2/(gamma+1)))*(1/2)), V[s][2](t) = sqrt(gamma*k[B]*mu[T][1](t)/m0)*((sqrt((2*(1-T2/mu[T][1](t)))/(gamma-1))+sqrt(2/(gamma+1)))*(1/2)), mu[T][1](t) = kappa[1](t)/ln(1+kappa[1](t)/T1), mu[T][2](t) = kappa[2](t)/ln(1+kappa[2](t)/T2)}
I got error message:
> dsn1 := dsolve(sys, numeric, maxfun = 0);
dsn1(2000);
Error, (in factor/cyclo5) object too large
Please help me to overcome this problem
Please Wait...