Question: Maple can't solve

 

I would like to solve x1v for funcF1(funcr(x),x)). I did similar computations before. 

I think Maple can deal with rational functions very well. It's having a trouble to

use the common denominator the simplify x1v. 

> denom(Wx1v);
2 2 2
-barv + funca(x) D(funcP)(funcr(x)) funcr(x) 
Even though Maple figured out the common denomiator, 

> Wx1v := numer(Wx1v);
2
2 funcr(x) barv D(funcP)(funcr(x)) D(funca)(x) - lambda barv

[
2 2 [
+ lambda funca(x) D(funcP)(funcr(x)) funcr(x) - [
[
[
funcr(x) barv D(funcP)(funcr(x)) D(funca)(x) barv funcF1(funcr(x), x)
- ----------------------------------------------- + ------------------------
2 2 2 funca(x)
-barv + funca(x) D(funcP)(funcr(x)) funcr(x)

2
funcr(x) funcF1(funcr(x), x) funca(x) D(funcP)(funcr(x))
- ---------------------------------------------------------
barv

3 2 2 ] [
funcr(x) funca(x) D(funcP)(funcr(x)) D(funca)(x) ] 2 [
+ ------------------------------------------------------] barv + [
/ 2 2 2\ ] [
\-barv + funca(x) D(funcP)(funcr(x)) funcr(x) / barv] [
funcr(x) barv D(funcP)(funcr(x)) D(funca)(x) barv funcF1(funcr(x), x)
- ----------------------------------------------- + ------------------------
2 2 2 funca(x)
-barv + funca(x) D(funcP)(funcr(x)) funcr(x)

2
funcr(x) funcF1(funcr(x), x) funca(x) D(funcP)(funcr(x))
- ---------------------------------------------------------
barv

3 2 2 ]
funcr(x) funca(x) D(funcP)(funcr(x)) D(funca)(x) ] 2
+ ------------------------------------------------------] funca(x)
/ 2 2 2\ ]
\-barv + funca(x) D(funcP)(funcr(x)) funcr(x) / barv]

2
D(funcP)(funcr(x)) funcr(x)
> Wx1v := expand(Wx1v);
2
2 funcr(x) barv D(funcP)(funcr(x)) D(funca)(x) - lambda barv

[
2 2 [
+ lambda funca(x) D(funcP)(funcr(x)) funcr(x) + [
[
[
3 2 2
2 funcr(x) funca(x) D(funcP)(funcr(x)) D(funca)(x) barv
- ----------------------------------------------------------
2 2 2
-barv + funca(x) D(funcP)(funcr(x)) funcr(x)

2
+ 2 funcr(x) funcF1(funcr(x), x) funca(x) D(funcP)(funcr(x)) barv

4 3 2
funcr(x) funcF1(funcr(x), x) funca(x) D(funcP)(funcr(x))
- -----------------------------------------------------------
barv

5 4 3
funcr(x) funca(x) D(funcP)(funcr(x)) D(funca)(x)
+ ------------------------------------------------------
/ 2 2 2\
\-barv + funca(x) D(funcP)(funcr(x)) funcr(x) / barv

3
funcr(x) barv D(funcP)(funcr(x)) D(funca)(x)
+ -----------------------------------------------
2 2 2
-barv + funca(x) D(funcP)(funcr(x)) funcr(x)

3 ]
barv funcF1(funcr(x), x)]
- -------------------------]
funca(x) ]
]
 
It couldn't get rid of the denominator all together. How
can I make it do that? 
 
> F1 := solve(Wx1v = 0, funcF1(funcr(x), x));
Warning, solutions may have been lost
 
Any idea? 
Please Wait...