Question: System of linear equations with solve

Hello,

I am trying to solve a system of six equations with the command solve. Unfortunately I only get the message "Warning, solution may have been lost". If i try to solve only five equations, i get an answer, that could be right.

My questins is: Is there a mistake in the syntax of solve? Or, is my equations system wrong?

 

Thank you!!!

 

Maple code:

> restart;
> FZ := 0 = FLZ+F11Z+F12Z+F21Z+F22Z+F31Z+F32Z;
       0 = FLZ + F11Z + F12Z + F21Z + F22Z + F31Z + F32Z
> FY := 0 = FLY-F21Y+F22Y+F31Y-F32Y;
              0 = FLY - F21Y + F22Y + F31Y - F32Y
> FX := 0 = FLX+F11T-F12T-F21X+F22X-F31X+F32X;
       0 = FLX + F11T - F12T - F21X + F22X - F31X + F32X
> MZ := 0 = MLZ-F11T*R1+F12T*R1-F21T*R2+F22T*R2-F31T*R3+F32T*R3;
   0 = MLZ - F11T R1 + F12T R1 - F21T R2 + F22T R2 - F31T R3

      + F32T R3
> MY := 0 = MLY+F11Z*b1-F12Z*b1-F21Z*(cos(g2)*R2+b2*sin(g2))-F22Z*(cos(g2)*R2-b2*sin(g2))+F31Z*(cos(g3)*R3-b3*sin(g3))+F32Z*(cos(g3)+b3*sin(g3));
0 = MLY + F11Z b1 - F12Z b1 - F21Z (cos(g2) R2 + b2 sin(g2))

   - F22Z (cos(g2) R2 - b2 sin(g2))

   + F31Z (cos(g3) R3 - b3 sin(g3)) + F32Z (cos(g3) + b3 sin(g3))
> MX := 0 = MLX+F11Z*R1+F12Z*R1-F21Z*(sin(g2)*R2-b2*cos(g2))-F22Z*(sin(g2)*R2+b2*cos(g2))-F31Z(sin(g3)*R3+b3*cos(g3))-F32Z*(sin(g3)*R3-b3*cos(g3));
  0 = MLX + F11Z R1 + F12Z R1 - F21Z (sin(g2) R2 - b2 cos(g2))

     - F22Z (sin(g2) R2 + b2 cos(g2))

     - F31Z(sin(g3) R3 + b3 cos(g3))

     - F32Z (sin(g3) R3 - b3 cos(g3))
> GEO11 := {F11T = sin(a1)*F11, F11X = sin(g1)*F11T, F11Y = cos(g1)*F11T, F11Z = cos(a1)*F11};
{F11T = sin(a1) F11, F11X = sin(g1) F11T, F11Y = cos(g1) F11T,

  F11Z = cos(a1) F11}
> GEO12 := {F12T = sin(a1)*F12, F12X = sin(g1)*F12T, F12Y = cos(g1)*F12T, F12Z = cos(a1)*F12};
{F12T = sin(a1) F12, F12X = sin(g1) F12T, F12Y = cos(g1) F12T,

  F12Z = cos(a1) F12}
> GEO21 := {F21T = sin(a2)*F21, F21X = sin(g2)*F21T, F21Y = cos(g2)*F21T, F21Z = cos(a2)*F21};
{F21T = sin(a2) F21, F21X = sin(g2) F21T, F21Y = cos(g2) F21T,

  F21Z = cos(a2) F21}
> GEO22 := {F22T = sin(a2)*F22, F22X = sin(g2)*F22T, F22Y = cos(g2)*F22T, F22Z = cos(a2)*F22};
{F22T = sin(a2) F22, F22X = sin(g2) F22T, F22Y = cos(g2) F22T,

  F22Z = cos(a2) F22}
> GEO31 := {F31T = sin(a3)*F31, F31X = sin(g3)*F31T, F31Y = cos(g3)*F31T, F31Z = cos(a3)*F31};
{F31T = sin(a3) F31, F31X = sin(g3) F31T, F31Y = cos(g3) F31T,

  F31Z = cos(a3) F31}
> GEO32 := {F32T = sin(a3)*F32, F32X = sin(g3)*F32T, F32Y = cos(g3)*F32T, F32Z = cos(a3)*F32};
{F32T = sin(a3) F32, F32X = sin(g3) F32T, F32Y = cos(g3) F32T,

  F32Z = cos(a3) F32}
> LG11 := solve(GEO11, {F11T, F11X, F11Y, F11Z});
       {F11T = sin(a1) F11, F11X = sin(g1) sin(a1) F11,

         F11Y = cos(g1) sin(a1) F11, F11Z = cos(a1) F11}
> LG12 := solve(GEO12, {F12T, F12X, F12Y, F12Z});
       {F12T = sin(a1) F12, F12X = sin(g1) sin(a1) F12,

         F12Y = cos(g1) sin(a1) F12, F12Z = cos(a1) F12}
> LG21 := solve(GEO21, {F21T, F21X, F21Y, F21Z});
       {F21T = sin(a2) F21, F21X = sin(g2) sin(a2) F21,

         F21Y = cos(g2) sin(a2) F21, F21Z = cos(a2) F21}
> LG22 := solve(GEO22, {F22T, F22X, F22Y, F22Z});
       {F22T = sin(a2) F22, F22X = sin(g2) sin(a2) F22,

         F22Y = cos(g2) sin(a2) F22, F22Z = cos(a2) F22}
> LG31 := solve(GEO31, {F31T, F31X, F31Y, F31Z});
       {F31T = sin(a3) F31, F31X = sin(g3) sin(a3) F31,

         F31Y = cos(g3) sin(a3) F31, F31Z = cos(a3) F31}
> LG32 := solve(GEO32, {F32T, F32X, F32Y, F32Z});
       {F32T = sin(a3) F32, F32X = sin(g3) sin(a3) F32,

         F32Y = cos(g3) sin(a3) F32, F32Z = cos(a3) F32}
> LGG := `union`(`union`(`union`(`union`(`union`(LG11, LG12), LG21), LG22), LG31), LG32);
       {F11T = sin(a1) F11, F11X = sin(g1) sin(a1) F11,

         F11Y = cos(g1) sin(a1) F11, F11Z = cos(a1) F11,

         F12T = sin(a1) F12, F12X = sin(g1) sin(a1) F12,

         F12Y = cos(g1) sin(a1) F12, F12Z = cos(a1) F12,

         F21T = sin(a2) F21, F21X = sin(g2) sin(a2) F21,

         F21Y = cos(g2) sin(a2) F21, F21Z = cos(a2) F21,

         F22T = sin(a2) F22, F22X = sin(g2) sin(a2) F22,

         F22Y = cos(g2) sin(a2) F22, F22Z = cos(a2) F22,

         F31T = sin(a3) F31, F31X = sin(g3) sin(a3) F31,

         F31Y = cos(g3) sin(a3) F31, F31Z = cos(a3) F31,

         F32T = sin(a3) F32, F32X = sin(g3) sin(a3) F32,

         F32Y = cos(g3) sin(a3) F32, F32Z = cos(a3) F32}
> LGS1 := subs(LGG, FX);
   0 = FLX + sin(a1) F11 - sin(a1) F12 - sin(g2) sin(a2) F21

      + sin(g2) sin(a2) F22 - sin(g3) sin(a3) F31

      + sin(g3) sin(a3) F32
> LGS2 := subs(LGG, FY);
      0 = FLY - cos(g2) sin(a2) F21 + cos(g2) sin(a2) F22

         + cos(g3) sin(a3) F31 - cos(g3) sin(a3) F32
> LGS3 := subs(LGG, FZ);
0 = FLZ + cos(a1) F11 + cos(a1) F12 + cos(a2) F21 + cos(a2) F22

   + cos(a3) F31 + cos(a3) F32
> LGS4 := subs(LGG, MX);
          0 = MLX + cos(a1) F11 R1 + cos(a1) F12 R1

             - cos(a2) F21 (sin(g2) R2 - b2 cos(g2))

             - cos(a2) F22 (sin(g2) R2 + b2 cos(g2))

             - (cos(a3) F31)(sin(g3) R3 + b3 cos(g3))

             - cos(a3) F32 (sin(g3) R3 - b3 cos(g3))
> LGS5 := subs(LGG, MY);
           0 = MLY + cos(a1) F11 b1 - cos(a1) F12 b1

              - cos(a2) F21 (cos(g2) R2 + b2 sin(g2))

              - cos(a2) F22 (cos(g2) R2 - b2 sin(g2))

              + cos(a3) F31 (cos(g3) R3 - b3 sin(g3))

              + cos(a3) F32 (cos(g3) + b3 sin(g3))
> LGS6 := subs(LGG, MZ);
   0 = MLZ - sin(a1) F11 R1 + sin(a1) F12 R1 - sin(a2) F21 R2

      + sin(a2) F22 R2 - sin(a3) F31 R3 + sin(a3) F32 R3
>
> solve({LGS1, LGS2, LGS3, LGS4, LGS5, LGS6}, {F11, F12, F21, F22, F31, F32});
Warning, solutions may have been lost
>

Download Kraefte.mw

Please Wait...