Question: PDE system solution boundary condition problem

i'm trying to solve a sysem of pde, but i get this error 

Error, (in PDEtools:-Library:-NormalizeBoundaryConditions) unable to isolate the functions {x(0, z, r), x(t, z, 0.5e-2), xeq(t, z, 0.5e-2), y(0, z, r), y(t, 0, r)} in the given boundary conditions {x(0, z, r) = 0, x(t, z, 0.5e-2) = xeq(t, z, 0.5e-2), y(0, z, r) = 0, y(t, 0, r) = 0}
>
> restart; with(PDEtools);
[CanonicalCoordinates, ChangeSymmetry, CharacteristicQ,

CharacteristicQInvariants, ConservedCurrentTest,

ConservedCurrents, ConsistencyTest, D_Dx, DeterminingPDE,

Eta_k, Euler, FromJet, FunctionFieldSolutions,

InfinitesimalGenerator, Infinitesimals, IntegratingFactorTest,

IntegratingFactors, InvariantEquation, InvariantSolutions,

InvariantTransformation, Invariants, Laplace, Library, PDEplot,

PolynomialSolutions, ReducedForm, SimilaritySolutions,

SimilarityTransformation, Solve, SymmetryCommutator,

SymmetryGauge, SymmetrySolutions, SymmetryTest,

SymmetryTransformation, TWSolutions, ToJet, build, casesplit,

charstrip, dchange, dcoeffs, declare, diff_table, difforder,

dpolyform, dsubs, mapde, separability, splitstrip, splitsys,

undeclare]
> Y := diff_table(y(t, z, r));

> X := diff_table(x(t, z, r));

> Xeq := diff_table(xeq(t, z, r));

> Yeq := diff_table(yeq(t, z, r));

> pde[1] := Y[t]-3*(Yeq[]-Y[])+Y[z] = 0;
/ d \
|--- y(t, z, r)| - 3 yeq(t, z, r) + 3 y(t, z, r)
\ dt /

/ d \
+ |--- y(t, z, r)| = 0
\ dz /
> pde[2] := X[t]-0.2e-1*X[r, r]-0.2e-1*X[r]/r = 0;
/ d \ / d / d \\
|--- x(t, z, r)| - 0.02 |--- |--- x(t, z, r)||
\ dt / \ dr \ dr //

/ d \
0.02 |--- x(t, z, r)|
\ dr /
- --------------------- = 0
r
> pde[3] := 5*(Yeq[]-Y[]) = 0.1e-2*X[r];
/ d \
5 yeq(t, z, r) - 5 y(t, z, r) = 0.001 |--- x(t, z, r)|
\ dr /
> pde[4] := Xeq[] = 100*Yeq[]/(1+1000*Yeq[]);
100 yeq(t, z, r)
xeq(t, z, r) = ---------------------
1 + 1000 yeq(t, z, r)
> bc[1] := eval(X[], t = 0) = 0;
x(0, z, r) = 0
> bc[2] := eval(Y[], t = 0) = 0;
y(0, z, r) = 0
> bc[3] := eval(Y[], z = 0) = 0;
y(t, 0, r) = 0
> bc[4] := eval(X[r], r = 0.16e-1) = 0;
/ d \
eval|--- x(t, z, r), {r = 0.016}| = 0
\ dr /
> bc[5] := eval(X[], r = 0.5e-2) = eval(Xeq[], r = 0.5e-2);
x(t, z, 0.005) = xeq(t, z, 0.005)
> sys := {bc[1], bc[2], bc[3], bc[4], bc[5], pde[1], pde[2], pde[3], pde[4]};
/
|
< / d \ / d
|5 yeq(t, z, r) - 5 y(t, z, r) = 0.001 |--- x(t, z, r)|, |--- x(
\ \ dr / \ dt

/ d \
0.02 |--- x(t, z, r)|
\ / d / d \\ \ dr /
t, z, r)| - 0.02 |--- |--- x(t, z, r)|| - --------------------- =
/ \ dr \ dr // r

/ d \
0, |--- y(t, z, r)| - 3 yeq(t, z, r) + 3 y(t, z, r)
\ dt /

/ d \
+ |--- y(t, z, r)| = 0, x(0, z, r) = 0,
\ dz /

x(t, z, 0.005) = xeq(t, z, 0.005),

100 yeq(t, z, r)
xeq(t, z, r) = ---------------------, y(0, z, r) = 0,
1 + 1000 yeq(t, z, r)

\
|
/ d \ >
y(t, 0, r) = 0, eval|--- x(t, z, r), {r = 0.016}| = 0|
\ dr / /
> cond := {bc[1], bc[2], bc[3], bc[4], bc[5]};
/
{ x(0, z, r) = 0, x(t, z, 0.005) = xeq(t, z, 0.005),
\

y(0, z, r) = 0, y(t, 0, r) = 0,

/ d \ \
eval|--- x(t, z, r), {r = 0.016}| = 0 }
\ dr / /

> soluzione := pdsolve(sys, [y(t, z, r), yeq(t, z, r), x(t, z, r), xeq(t, z, r)]);
Error, (in PDEtools:-Library:-NormalizeBoundaryConditions) unable to isolate the functions {x(0, z, r), x(t, z, 0.5e-2), xeq(t, z, 0.5e-2), y(0, z, r), y(t, 0, r)} in the given boundary conditions {x(0, z, r) = 0, x(t, z, 0.5e-2) = xeq(t, z, 0.5e-2), y(0, z, r) = 0, y(t, 0, r) = 0}
>
>
>
Please Wait...