Question: Solving Simultaneous equations.

Hi, all of you.
I'm an engineering college student. And this is my first time to check the roots using the Maple.
But I tired to solve simultaneous equations and got  into some difficulties.

Acutually I'd like to get 6 roots[ A[i], t[i], i=(1,2,3).
Initial values are A[1]+A[2]+A[3]=1 and t[1]=0.

So I've simplified for 4 equations to get 4 root and to ask you.
Below, there is my code to get A[2], A[3], t[2] and t[3]. But it doesn't work well.
t[2] and t[3] are  minimums over 0, also. If t[2]=n*Pi/Wd, n is 1. t[3]=2Pi/Wd.
Did I miss something?

P.S.  In eq00, I want to change omega*sqrt(1-zeta^2) to Wd, but when I did this way, exp's omega was changed in eq1,eq2,eq3 and eq4 . So I substituted here eq0. (wd = omega*sqrt(1-zeta^2))

 

restart;
#assume ( A[2]>0, A[3]>0, t[2]>0, t[3]>0, t[2]0, zeta>0, Wd>0);
eq1 := 1-A[2]-A[3]+A[2]*exp((zeta*t[2]*omega*sqrt(1-zeta^2))/sqrt(1-zeta^2))*cos(t[2]*omega*sqrt(1-zeta^2))+A[3]*cos(t[3]*(omega*sqrt(1-zeta^2)))*exp((zeta*t[3]*(omega*sqrt(1-zeta^2))/sqrt(1-zeta^2)))=0;
eq2 := A[2]*exp((zeta*t[2]*omega*sqrt(1-zeta^2))/sqrt(1-zeta^2))*sin(t[2]*omega*sqrt(1-zeta^2))+A[3]*sin(t[3]*(omega*sqrt(1-zeta^2)))*exp((zeta*t[3]*(omega*sqrt(1-zeta^2))/sqrt(1-zeta^2)))=0;
eq3 := A[2]*t[2]*exp((zeta*t[2]*omega*sqrt(1-zeta^2))/sqrt(1-zeta^2))*cos(t[2]*omega*sqrt(1-zeta^2))+A[3]*t[3]*cos(t[3]*omega*sqrt(1-zeta^2))*exp((zeta*t[3]*omega*sqrt(1-zeta^2))/sqrt(1-zeta^2))=0;
eq4 := A[2]*t[2]*exp((zeta*t[2]*omega*sqrt(1-zeta^2))/sqrt(1-zeta^2))*sin(t[2]*omega*sqrt(1-zeta^2))+A[3]*t[3]*sin(t[3]*omega*sqrt(1-zeta^2))*exp((zeta*t[3]*omega*sqrt(1-zeta^2))/sqrt(1-zeta^2))=0;

eq00:= sqrt(1-zeta^2)= Wd/omega;  
eq11:= subs(eq00, eq1);
eq22:= subs(eq00, eq2);
eq33:= subs(eq00, eq3);
eq44:= subs(eq00, eq4);


_EnvAllSolution := true:
_EnvExplicit := true:

s1:=solve({eq11,eq22,eq33,eq44}, {t[2],t[3],A[2],A[3]}) assuming A[2]>0, A[3]>0, t[2]>0, t[3]>0, t[2]0, zeta>0, Wd>0;

 

 

Please Wait...