Question: plotting parameters from an eigenvalue problem

Hello everyone,

I am dealing with an Eigen value problem, the equations are

restart:with(plots):

Eq1:=diff(f(y),y$2)-a^2*f(y)+a*(h(y)+R*q(y))=0;

Eq2:=diff(h(y),y$2)-a^2*h(y)+a*Z*y*f(y)=0;

Eq3:=diff(q(y),y$2)-a^2*q(y)+a*f(y)=0;

ic:=f(0)=0,f(1)=0,D(h)(0)=0,q(0)=0,h(1)=0,q(1)=0;

where f,h,q are Eigen functions, R, Z are dimensionless numbers, a is the wave length. 

My question is, with the assumption of marginal stability, for fixed values of Z (say 5),

how we can plot R(a)?

Thanks 

Please Wait...