Question: Basis For Subspace of a Vector Space that is not R^n

I've been playing around with the Basis command in the LinearAlgebra package. It's very easy to get a Basis for any subspace of R^n. However, if you're dealing with finite-dimensional polynomial or matrix spaces, the Basis command doesn't work. Due to some basic isomorphism theorems, we can always associate these vectors with those in R^n. I was wondering if there is a way to get Maple, via the Basis command, to handle "other types" of vectors. For example, how might one get Maple to return a basis of {x^2+x+4,x+3,2x^2-x-5,5x^2+x-7} in P_2, the space of polynomials of degree less than or equal to 2, or, a basis for {[[2,3],[5,6]],[[3,2],[0,1]],[[1,1],[0,5]]} in M_{2,2}, the space of 2 x 2 matrices, without converting to R^n?

Please Wait...