Question: How do I apply Differential Transformation Method-Pade (DTM-Pade) using Maple in boundary layer problem for infinite boundary conditions?

> restart;
> Digits := 10;
> m := 11;
> P := 100;
> alpha := 1;
> F[0] := 0;
> F[1] := epsilon;
> epsilon := 0;
> F[2] := A;
> T[0] := -T[1]/alpha-1;
> T[1] := B;
> for k from 0 to m do F[k+3] := (-(sum(F[k-r+2]*F[r]*(k-r+2)*(k-r+1), r = 0 .. k))-1+sum(F[r+1]*F[k-r+1]*(r+1)*(k-r+1), r = 0 .. k))*factorial(k)/factorial(k+3); T[k+2] := -P*(sum(F[r]*T[k-r+1]*(k-r+1), r = 0 .. k))*factorial(k)/factorial(k+2) end do;
> f := 0;
> t := 0;
>
> for k from 0 to m do f := f+F[k]*eta^k; t := t+T[k]*eta^k end do;
> print(f);
> print(t)

> with(numapprox);
> pade(f, eta, [4, 4]);

>pade(t, eta, [4, 4])

>solve({limit(pade(f, eta, [4, 4]), eta = infinity) = 0., limit(pade(t, eta, [4, 4]), eta = infinity) = 0.}, [A, B])

 

 

Please Wait...