Question: maple solve problem

Here is the original question http://www.mapleprimes.com/ViewTemp.ashx?f=21095_1386318320/screen06.12.13.docx , replaced by the questioner.  She/he must not do such things.

 

 

 

 

The differential equation dy/dt = t / (2-y), y(0)=1 fails the tests in section 5.1 at y=2. [ f(t,y) is undefined at y=2 and the y-partial derivative of f(t,y) is also undefined there. ] If a solution stays away from y=2, there is no problem at all. Try a few different initial conditions and summarize your findings. Use the Runge-Kutta order 4 method with a fixed step size.

Hint: You may find Maple's solution of the differential equation helpful:

s1 := dsolve({diff(y(t),t)= t/(2-y(t))}, y(t)); 

In the solution _C1 is a constant to be determined using the initial conditions.

Please Wait...