Question: is it possible to calculate matrix A with the equations in these two pages

https://drive.google.com/file/d/0B2D69u2pweEvU3NpWWQwS3U1XzQ/edit?usp=sharing
https://drive.google.com/file/d/0B2D69u2pweEvMnFabkdiX1hpYVk/edit?usp=sharing

 

is it impossible to calculate matrix A with these two pages of information
 
if you do not know chinese, i guess that you can understand the equations in it, here is the attachement
 
x(n+1) - A*x(n) < g(n)
 
restart;
X1:=[1.05657970467127, .369307407127487, .400969917393968, .368036162749865, .280389875142339, .280523489139136, .283220960827744, .373941285224253, .378034013792196, .384412762008662, .358678988563716, .350625923673556, .852039817522304, .362240519978640, 1.03197080591829, .343650441408896, .982510654490390, .404544012440991, .422063867224247, 1.20938803285209, .455708586000668, 1.22503869712995, .388259397947667, .472188904769827, 1.31108028794286, 1.19746589728366, .572669348193002];
Y1:= [.813920951682113, 10.3546712426210, 2.54581301217449, 10.2617298458172, 3.82022939508992, 3.81119683373741, 3.90918914917183, 10.5831132713329, 10.8700088489538, 11.0218056177585, 10.5857571473115, 9.89034057997145, .271497107157453, 9.77706473740146, 2.23955104698355, 4.16872072216206, .806710906391666, 11.9148193656260, 12.0521411908477, 2.52812993540440, 12.6348841508094, 2.72197067934160, 5.10891266728297, 13.3609183272238, 3.03572692234234, 1.07326033849793, 15.4268962507711];
Z1:= [8.93290500985527, 8.96632856524217, 15.8861149154785, 9.16576669760908, 3.20341865536950, 3.11740291181539, 3.22328961317946, 8.71094047480794, 8.60596466961827, 9.15440788281943, 10.2935566768586, 10.5765776143026, 16.3469510439066, 9.36885507010739, 2.20434678689869, 3.88816077008078, 17.9816287534802, 10.1414228793737, 10.7356141216242, 4.00703203725441, 12.0105837616461, 3.77028605914906, 5.01411979976607, 12.7529165152417, 3.66800269682059, 21.2178824031985, 13.9148746721034];
with(LinearAlgebra):
R := [seq(X1[n]/(1-Z1[n]), n=1..27)];
S := [seq(Y1[n]/(1-Z1[n]), n=1..27)];
A3 := Matrix([[c1, c2],[c3,c4]]);
A2 := Matrix([[b1, b2],[b3,b4]]);
A1 := Matrix([[a1, a2],[a3,a4]]);
R[1] = MatrixExponential(A1*t)*alpha1; # unknown A1 and alpha1
S[1] = MatrixExponential(A1*t)*beta1;
R[2] = MatrixExponential(A2*t)*alpha2;
S[2]= MatrixExponential(A2*t)*beta2;
R[3] = MatrixExponential(A3*t)*alpha3;
S[3] = MatrixExponential(A3*t)*beta3;
Lambda3 := Eigenvalues(subs(t=3,MatrixExponential(A3*t))); # Step 1
Lambda2 := Eigenvalues(subs(t=2,MatrixExponential(A2*t)));
Lambda1 := Eigenvalues(subs(t=1,MatrixExponential(A1*t)));
 
************************************* Here it is, missing one equation***************************
solve(
[R[2] = Lambda1[1]*R[1], 
S[2] = Lambda1[2]*S[1], 
R[1] = 1/(Lambda1[1])*R[1], R[2] - subs(t=1,MatrixExponential(A1*t))[1][1]*R[1]=alpha0],
[a1,a2,a3,a4]);
 
Missing one formula in order to solve four variables
 
Remark:
 
R[3] = Lambda2[1]*R[2]; # in terms of b1,b2,b3… Step 2
R[2] = Lambda1[1]*R[1]; # in terms of a1, a2, a3 … Step 2
S[3] = Lambda2[2]*S[2]; # in terms of b1,b2,b3…
S[2] = Lambda1[2]*S[1]; # in terms of a1, a2, a3 … Step 2
R1 = 1/( Lambda1[1])*R0;
S[3] = (Lambda2[2]* Lambda1[2])*S[1];
S[2] = (Lambda1[2])*S[1]; # in terms of a1, a2, a3 … Same
R[3] = 1/(Lambda3[1]* Lambda2[1]* Lambda1[1])*R[1];
R[2] = 1/(Lambda2[1]* Lambda1[1])*R[1];
solve([R3 = Lambda2[1]*R2,R2 = Lambda1[1]*R1,S3 = Lambda2[2]*S2,S2 = Lambda1[2]*S1], a1);
 
alpha1 := R[2]; # Step 2
alpha2 := solve(alpha2+ Lambda1[1]*alpha1 = R[3], alpha1); 
alpha3 := solve(R[4] = alpha3+ Lambda2[1]*alpha2 + Lambda2[1]*Lambda1[1]*alpha1, alpha2);
 
alpha2+ Lambda1[1]*alpha1 = R[3]
 
R[2] - subs(t=1,MatrixExponential(A1*t))[1][1]*R[1]=alpha1; #X[2] – A(1)*X[1] = G[1]; 
S[2] - subs(t=1,MatrixExponential(A1*t))[1][1]*S[1]=beta1;
Please Wait...