Question: How to prove the superposition in case?

superposition said that a vector is a linear combination of other vectors

but even if i calculated the coefficient, i do not know which vector is which other vectors's linear combination

how to prove?

InputMatrix3 := Matrix([[close3(t), close3(t+1) , close3(t+2) , close3(t+3) , close3(t+4) , close3(t+5)],
[close3(t+1) , close3(t+2) , close3(t+3) , close3(t+4) , close3(t+5) , close3(t+6)],
[close3(t+2) , close3(t+3) , close3(t+4) , close3(t+5) , close3(t+6) , 0],
[close3(t+3) , close3(t+4) , close3(t+5) , close3(t+6) , 0 , 0],
[close3(t+4) , close3(t+5) , close3(t+6) , 0 , 0 , 0],
[close3(t+5) , close3(t+6) , 0 , 0 , 0, 0],
[close3(t+6) , 0 , 0 , 0, 0, 0]]):
EigenValue1 := Eigenvalues(MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3)):
Asso_eigenvector := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3)):
AEigenVector[tt+1] := Asso_eigenvector;

Matrix(6, 6, {(1, 1) = .514973850028629+0.*I, (1, 2) = .510603608194333+0.*I, (1, 3) = .469094659512372+0.*I, (1, 4) = .389872713818831+0.*I, (1, 5) = .279479324327359+0.*I, (1, 6) = -.154682461176604+0.*I, (2, 1) = .493994413154560+0.*I, (2, 2) = .306651336822139+0.*I, (2, 3) = -0.583656699197969e-1+0.*I, (2, 4) = -.417550308930506+0.*I, (2, 5) = -.566122865008542+0.*I, (2, 6) = .404579494288380+0.*I, (3, 1) = .449581541124671+0.*I, (3, 2) = -0.266751368453398e-1+0.*I, (3, 3) = -.529663398913996+0.*I, (3, 4) = -.359719616523673+0.*I, (3, 5) = .313717798014566+0.*I, (3, 6) = -.537405340038665+0.*I, (4, 1) = .386952162293470+0.*I, (4, 2) = -.351332186748244+0.*I, (4, 3) = -.390816901794187+0.*I, (4, 4) = .470032416161955+0.*I, (4, 5) = .231969182174424+0.*I, (4, 6) = .547134073332474+0.*I, (5, 1) = .306149178348317+0.*I, (5, 2) = -.530611390076568+0.*I, (5, 3) = .192717713961280+0.*I, (5, 4) = .291213691618787+0.*I, (5, 5) = -.562991429686901+0.*I, (5, 6) = -.431067688369314+0.*I, (6, 1) = .212576094920847+0.*I, (6, 2) = -.489443150196337+0.*I, (6, 3) = .553283259136031+0.*I, (6, 4) = -.488381938231088+0.*I, (6, 5) = .363604594054259+0.*I, (6, 6) = .195982711855368+0.*I})

Matrix(6, 6, {(1, 1) = .515428842592397+0.*I, (1, 2) = .515531996615269+0.*I, (1, 3) = .468108280940919+0.*I, (1, 4) = -.392394120975052+0.*I, (1, 5) = -.280467124908196+0.*I, (1, 6) = -.129613084502380+0.*I, (2, 1) = .494563493180197+0.*I, (2, 2) = .301273494494509+0.*I, (2, 3) = -0.622136916501293e-1+0.*I, (2, 4) = .438383262732459+0.*I, (2, 5) = .571041594120088+0.*I, (2, 6) = .377494770878435+0.*I, (3, 1) = .450886315308369+0.*I, (3, 2) = -0.323387895921418e-1+0.*I, (3, 3) = -.527636820417566+0.*I, (3, 4) = .332744872607714+0.*I, (3, 5) = -.322934536375586+0.*I, (3, 6) = -.549772001891837+0.*I, (4, 1) = .385916641681991+0.*I, (4, 2) = -.352066020655722+0.*I, (4, 3) = -.389655495441319+0.*I, (4, 4) = -.450049711766943+0.*I, (4, 5) = -.221529986447276+0.*I, (4, 6) = .568916672007495+0.*I, (5, 1) = .305485655770791+0.*I, (5, 2) = -.528766119966973+0.*I, (5, 3) = .201065789602278+0.*I, (5, 4) = -.310329356773806+0.*I, (5, 5) = .555973984740943+0.*I, (5, 6) = -.425730045170186+0.*I, (6, 1) = .210210489500614+0.*I, (6, 2) = -.488744465076970+0.*I, (6, 3) = .553484076328700+0.*I, (6, 4) = .494245653290329+0.*I, (6, 5) = -.364390406353340+0.*I, (6, 6) = .183130120876843+0.*I})
mm1 := 1;
solve(
[AEigenVector[mm1][2][1][6] = m1*AEigenVector[mm1][2][1][1]+m2*AEigenVector[mm1][2][1][2]+m3*AEigenVector[mm1][2][1][3]+m4*AEigenVector[mm1][2][1][4]+m5*AEigenVector[mm1][2][1][5],
AEigenVector[mm1][2][2][6] = m1*AEigenVector[mm1][2][2][1]+m2*AEigenVector[mm1][2][2][2]+m3*AEigenVector[mm1][2][2][3]+m4*AEigenVector[mm1][2][2][4]+m5*AEigenVector[mm1][2][2][5],
AEigenVector[mm1][2][3][6] = m1*AEigenVector[mm1][2][3][1]+m2*AEigenVector[mm1][2][3][2]+m3*AEigenVector[mm1][2][3][3]+m4*AEigenVector[mm1][2][3][4]+m5*AEigenVector[mm1][2][3][5],
AEigenVector[mm1][2][4][6] = m1*AEigenVector[mm1][2][4][1]+m2*AEigenVector[mm1][2][4][2]+m3*AEigenVector[mm1][2][4][3]+m4*AEigenVector[mm1][2][4][4]+m5*AEigenVector[mm1][2][4][5],
m1^2 + m2^2 + m3^2 + m4^2 + m5^2 = 1], [m1, m2, m3, m4, m5]);

[m1 = .4027576723+.5022235499*I, m2 = -.5922841426-1.043213223*I, m3 = -.1130969773+.9150300317*I, m4 = .9867039883-.5082455178*I, m5 = -1.400123192+.1536850673*I], [m1 = .4027576723-.5022235499*I, m2 = -.5922841426+1.043213223*I, m3 = -.1130969773-.9150300317*I, m4 = .9867039883+.5082455178*I, m5 = -1.400123192-.1536850673*I]

mm1 := 2;
solve(
[AEigenVector[mm1][2][1][6] = m1*AEigenVector[mm1][2][1][1]+m2*AEigenVector[mm1][2][1][2]+m3*AEigenVector[mm1][2][1][3]+m4*AEigenVector[mm1][2][1][4]+m5*AEigenVector[mm1][2][1][5],
AEigenVector[mm1][2][2][6] = m1*AEigenVector[mm1][2][2][1]+m2*AEigenVector[mm1][2][2][2]+m3*AEigenVector[mm1][2][2][3]+m4*AEigenVector[mm1][2][2][4]+m5*AEigenVector[mm1][2][2][5],
AEigenVector[mm1][2][3][6] = m1*AEigenVector[mm1][2][3][1]+m2*AEigenVector[mm1][2][3][2]+m3*AEigenVector[mm1][2][3][3]+m4*AEigenVector[mm1][2][3][4]+m5*AEigenVector[mm1][2][3][5],
AEigenVector[mm1][2][4][6] = m1*AEigenVector[mm1][2][4][1]+m2*AEigenVector[mm1][2][4][2]+m3*AEigenVector[mm1][2][4][3]+m4*AEigenVector[mm1][2][4][4]+m5*AEigenVector[mm1][2][4][5],
m1^2 + m2^2 + m3^2 + m4^2 + m5^2 = 1], [m1, m2, m3, m4, m5]);

[m1 = .4262845394-.5114193433*I, m2 = -.6313720018+1.072185334*I, m3 = -0.7337582213e-1-.9580760394*I, m4 = -1.036525681-.5400714113*I, m5 = 1.412710014+.1874839516*I], [m1 = .4262845394+.5114193433*I, m2 = -.6313720018-1.072185334*I, m3 = -0.7337582213e-1+.9580760394*I, m4 = -1.036525681+.5400714113*I, m5 = 1.412710014-.1874839516*I]

Please Wait...