Question: Résolution d'un système algébrique

Bonjour,

Comment résoudre le système algébrique suivant :

f1:=(1+mu+nu)*(mu^2-2*mu*alpha+2*mu+2*mu*alpha*nu-2*alpha+1+alpha^2+2*alpha^2*nu+nu^2*alpha^2-2*nu*alpha)*(lambda*alpha^2-3*mu*alpha*nu^2+2*nu^2*mu-4*lambda*alpha*nu-mu^2*alpha*nu^2-lambda*alpha^3-nu*alpha+lambda*alpha-4*mu*alpha*nu+3*mu^2*nu-2*mu^3*alpha*nu+3*mu*nu-5*mu^2*alpha*nu+3*lambda*nu+mu^3*nu+3*nu^2*alpha^3*mu-5*lambda*mu^2*alpha*nu+3*lambda*alpha^3*mu-9*lambda*alpha*mu*nu+6*lambda*mu*nu+3*lambda*mu^2*nu-lambda+nu^2+nu+nu^3*alpha^3*mu-3*mu^2*alpha^2*nu-5*nu^2*alpha^2*mu-4*mu*alpha^2*nu-3*lambda*alpha^3*nu^2-3*lambda*alpha^3*nu-3*lambda*mu^2-nu^3*alpha+nu^2*mu^2+3*mu*alpha^3*nu+5*lambda*mu^2*alpha-5*lambda*mu^2*alpha^2+2*mu^2*alpha^3*nu-3*lambda*mu+mu^2*alpha^3*nu^2+alpha^3*mu+alpha^3*mu^2+3*lambda*alpha^3*nu^2*mu+6*lambda*alpha^3*mu*nu+5*lambda*alpha*nu^2*mu-9*lambda*alpha^2*mu*nu+5*lambda*mu^2*alpha^2*nu-5*lambda*alpha*nu^2-4*lambda*alpha^2*mu+mu*alpha*nu^3-2*nu^2*alpha+mu^3*alpha^2*nu-lambda*mu^3-mu^2*alpha^2*nu^2-lambda*alpha^3*nu^3-5*lambda*alpha^2*mu*nu^2+4*alpha^2*nu*lambda+5*lambda*alpha^2*nu^2+2*lambda*alpha^2*nu^3-2*nu^3*alpha^2*mu+2*lambda*mu^3*alpha-mu*alpha^2-2*mu^2*alpha^2-mu^3*alpha^2+4*lambda*mu*alpha);

f2:=(lambda+mu+nu)*(nu^2+2*mu*alpha*nu+mu^2*alpha^2+2*lambda*nu-2*lambda*alpha*nu-2*lambda*mu*alpha+2*lambda*alpha^2*mu+lambda^2*alpha^2-2*lambda^2*alpha+lambda^2)*(lambda^3*alpha^3*nu-5*mu*alpha*nu^2+3*nu^2*mu-mu^2*alpha*nu^2+lambda^3*mu-3*lambda*nu^2+mu^3*alpha*nu+5*mu^2*alpha*nu-3*lambda*mu^2*alpha*nu+lambda^2*mu^2-nu^3+mu*nu^3-3*lambda*alpha^3*mu^2-3*lambda^2*nu-9*lambda*alpha*mu*nu-lambda^3+6*lambda*mu*nu+2*lambda*mu^2*nu+3*lambda^2*mu-3*lambda^2*alpha^3*mu-5*mu^2*alpha^2*nu+5*nu^2*alpha^2*mu+mu^3*alpha^3*nu+3*lambda*nu^2*mu+2*nu^3*alpha+nu^2*mu^2-mu^3*alpha^3-5*lambda*mu^2*alpha+5*lambda*mu^2*alpha^2+3*lambda^2*nu*mu+3*mu^2*alpha^3*nu+mu^2*alpha^3*nu^2+2*lambda*alpha^3*nu^2*mu+6*lambda*alpha^3*mu*nu+3*lambda*alpha^3*mu^2*nu-5*lambda*alpha*nu^2*mu-9*lambda*alpha^2*mu*nu-5*lambda*mu^2*alpha^2*nu+5*lambda*alpha*nu^2-lambda^3*alpha*mu-4*lambda^2*alpha^2*nu-2*mu*alpha*nu^3+3*lambda^2*alpha^3*mu*nu-2*lambda^2*alpha*mu^2-4*lambda^2*alpha*mu-2*mu^3*alpha^2*nu-mu^2*alpha^2*nu^2+3*lambda^2*alpha^3*nu+lambda^2*alpha^3*nu^2-3*lambda*alpha^2*mu*nu^2+lambda^3*alpha^2+lambda^3*alpha-4*lambda^2*alpha^2*mu*nu-4*lambda^2*alpha*nu*mu-5*lambda*alpha^2*nu^2+4*lambda^2*alpha*nu-lambda*alpha^2*nu^3+nu^3*alpha^2*mu-lambda*mu^3*alpha-lambda^3*alpha^3+2*mu^3*alpha^2+4*lambda^2*alpha^2*mu-lambda^3*alpha^2*nu-2*lambda^2*alpha^2*nu^2);

f3:=(1+nu+lambda)*(nu^2*alpha^2-2*nu^2*alpha+nu^2-2*lambda*alpha*nu+2*lambda*nu-2*nu*alpha+2*alpha^2*nu+lambda^2+2*lambda*alpha+alpha^2)*(2*lambda*alpha^2+4*mu*alpha*nu^2-3*nu^2*mu+3*lambda*alpha*nu-lambda*alpha^3+lambda^3*mu+nu*alpha-3*lambda*nu^2-lambda*alpha+5*mu*alpha*nu-2*lambda*nu+3*nu^2*alpha^3*mu-nu^3+mu*nu^3-3*lambda*alpha^3*mu-3*lambda^2*nu+9*lambda*alpha*mu*nu-lambda^3-6*lambda*mu*nu-3*lambda^2*mu-nu^2+nu^3*alpha^3*mu-4*nu^2*alpha^2*mu-5*mu*alpha^2*nu-3*lambda*alpha^3*nu^2-3*lambda*alpha^3*nu+3*lambda*nu^2*mu+nu^3*alpha-lambda^2+3*mu*alpha^3*nu+3*lambda^2*nu*mu+alpha^3*mu-3*lambda*alpha^3*nu^2*mu-6*lambda*alpha^3*mu*nu-4*lambda*alpha*nu^2*mu+9*lambda*alpha^2*mu*nu+4*lambda*alpha*nu^2-2*lambda^3*alpha*mu+3*lambda^2*alpha^2*nu+5*lambda*alpha^2*mu-mu*alpha*nu^3+5*lambda^2*alpha*mu-lambda^2*alpha^3+2*nu^2*alpha+lambda^2*alpha^2-2*lambda^2*alpha^3*nu-lambda^2*alpha^3*nu^2-lambda*alpha^3*nu^3+4*lambda*alpha^2*mu*nu^2-lambda^3*alpha^2+2*lambda^3*alpha+5*alpha^2*nu*lambda+5*lambda^2*alpha^2*mu*nu-5*lambda^2*alpha*nu*mu+lambda^2*alpha+4*lambda*alpha^2*nu^2+5*lambda^2*alpha*nu+lambda*alpha^2*nu^3-nu^3*alpha^2*mu-2*mu*alpha^2-5*lambda^2*alpha^2*mu+lambda^3*alpha^2*nu+2*lambda^2*alpha^2*nu^2-5*lambda*mu*alpha);

f4:=(1+mu+lambda)*(mu^2*alpha^2-2*mu^2*alpha+mu^2-2*lambda*mu*alpha+2*mu+2*lambda*alpha^2*mu-2*mu*alpha+lambda^2*alpha^2+2*lambda*alpha+1)*(lambda^3*alpha^3*nu-lambda*alpha^2+5*lambda*alpha*nu-2*nu*alpha+2*lambda*alpha-5*mu*alpha*nu+3*mu^2*nu-mu^3*alpha*nu+3*mu*nu-4*mu^2*alpha*nu-3*lambda*nu+mu^3*nu+4*lambda*mu^2*alpha*nu-lambda^2*mu^2-3*lambda*alpha^3*mu^2-2*lambda*alpha^3*mu+9*lambda*alpha*mu*nu-6*lambda*mu*nu-3*lambda*mu^2*nu-2*lambda^2*mu-lambda+nu-3*lambda^2*alpha^3*mu+4*mu^2*alpha^2*nu+5*mu*alpha^2*nu+mu^3*alpha^3*nu-3*lambda*mu^2-lambda^2-mu^3*alpha^3+4*lambda*mu^2*alpha+4*lambda*mu^2*alpha^2-3*mu^2*alpha^3*nu-3*lambda*mu-alpha^3*mu^2-6*lambda*alpha^3*mu*nu+3*lambda*alpha^3*mu^2*nu+9*lambda*alpha^2*mu*nu-4*lambda*mu^2*alpha^2*nu+lambda^3*alpha*mu+5*lambda^2*alpha^2*nu+3*lambda*alpha^2*mu+3*lambda^2*alpha^3*mu*nu+2*lambda^2*alpha*mu^2+3*lambda^2*alpha*mu-lambda^2*alpha^3-mu^3*alpha^2*nu-lambda*mu^3+lambda^2*alpha^2-3*lambda^2*alpha^3*nu+2*lambda^3*alpha^2-lambda^3*alpha-5*alpha^2*nu*lambda-5*lambda^2*alpha^2*mu*nu+5*lambda^2*alpha*nu*mu+lambda^2*alpha-5*lambda^2*alpha*nu+lambda*mu^3*alpha-lambda^3*alpha^3+mu*alpha^2+2*mu^2*alpha^2+mu^3*alpha^2+5*lambda^2*alpha^2*mu-2*lambda^3*alpha^2*nu+5*lambda*mu*alpha);

 

Merci d'avance,

Gérard.

 

 

Please Wait...