Question: how to realize this definition in real data

very slow cause my computer have sound and overheat, still can not 

calculated result

%c := Old_Asso_eigenvector1, a := Old_Asso_eigenvector3,

%b := Old_Asso_eigenvector2

% b <= c, a <= c,

% a ^ c = a, a V c = c

% b ^ c = b, b V c = c

restart;
with(ExcelTools):
with(ListTools):
with(DynamicSystems):
filename := "1207.HK";
open3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "B2:B100");
high3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "C2:C100");
low3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "D2:D100");
close3 := Import(cat(cat("C://Temp//HK//Coal//",filename),".xls"), filename, "E2:E100");
with(CurveFitting):
n := 31;
f := Vector(n);
f2 := Vector(n);
open2 := Vector(n);high2 := Vector(n);gain2 := Vector(n);algebra2 := Vector(n);creative2 := Vector(n);creative3 := Vector(n);
upper2 := Vector(n);lower2 := Vector(n);upperloweratio := Vector(n);
deltaopen2 := Vector(n); deltahigh2 := Vector(n); deltalow2 := Vector(n); deltaclose2 := Vector(n);
logn := Vector(n);
for i from 0 to n-4 do
open2[i+1] := PolynomialInterpolation([[0,open3[n-i][1]],[1,open3[n-(i+1)][1]],[2,open3[n-(i+2)][1]],[4,open3[n-(i+3)][1]]],t):
high2[i+1] := PolynomialInterpolation([[0,high3[n-i][1]],[1,high3[n-(i+1)][1]],[2,high3[n-(i+2)][1]],[4,high3[n-(i+3)][1]]],t):
low2[i+1] := PolynomialInterpolation([[0,low3[n-i][1]],[1,low3[n-(i+1)][1]],[2,low3[n-(i+2)][1]],[4,low3[n-(i+3)][1]]],t):
if (close3[i+1][1]/close3[i+2][1]-1) < 0 then
gain2[i+1] := -1*round(100*abs(close3[i+1][1]/close3[i+2][1]-1)):
else
gain2[i+1] := round(abs(100*(close3[i+1][1]/close3[i+2][1]-1))):
end if;
deltaclose2[i+1] := close3[i+1][1] - close3[i+2][1];
deltahigh2[i+1] := high3[i+1][1] - high3[i+2][1];
deltaopen2[i+1] := open3[i+1][1] - open3[i+2][1];
logn[i+1] := ln(close3[i+1][1]/close3[i+2][1]);
f[i+1] := (high2[i+1] - open2[i+1])/4*1.8:
f2[i+1] := (open2[i+1] - low2[i+1])/4*1.8:
creative2[i+1] := simplify(((((close3[i+1][1]-close3[i+2][1]) + x)^2 -(close3[i+1][1]-close3[i+2][1])^2))/x)-x;
creative3[i+1] := simplify(((((close3[i+1][1]-close3[i+2][1]) + x)^3 -(close3[i+1][1]-close3[i+2][1])^3))/x);
upper2[i+1] := high3[i+1]-close3[i+1];
lower2[i+1] := close3[i+1]-low3[i+1];
upperloweratio[i+1] := round((lower2[i+1]/upper2[i+1])[1]);
od;
with(LinearAlgebra):
HilbertConj := proc(Px,Py)
return MatrixMatrixMultiply(Px,Py);
end proc:
HilbertDisj := proc(Px,Py)
return Px+Py- MatrixMatrixMultiply(Px,Py);
end proc:

t:=1;
i := 0;
InputMatrix3 := Matrix([[xxx, close3(t+1+i) , close3(t+2+i)],
[close3(t+1+i) , close3(t+2+i),0],
[close3(t+2+i),0 , 0]]):
InputMatrix3b := Matrix([[close3(t+1+i), close3(t+2+i) , close3(t+3+i)],
[close3(t+2+i) , close3(t+3+i),0],
[close3(t+3+i),0 , 0]]):
InputMatrix3c := Matrix([[close3(t+2+i), close3(t+3+i) , close3(t+4+i)],
[close3(t+3+i) , close3(t+4+i),0],
[close3(t+4+i),0 , 0]]):
m := MatrixMatrixMultiply(Transpose(InputMatrix3), InputMatrix3);
eigenvalues1 := Eigenvalues(m);
sys1 := MatrixMatrixMultiply(m-Matrix([[eigenvalues1[1],0,0],[0,eigenvalues1[1],0],[0,0,eigenvalues1[1]]]), Matrix([[x],[y],[z]]));
%solve([sys1[1][1],sys1[2][1],sys1[3][1]], [x,y,z]);
sol1 := solve([sys1[1][1],sys1[2][1]], [x,y,z]);

sys2 := MatrixMatrixMultiply(m-Matrix([[eigenvalues1[2],0,0],[0,eigenvalues1[2],0],[0,0,eigenvalues1[2]]]), Matrix([[x],[y],[z]]));
%solve([sys2[1][1],sys2[2][1],sys2[3][1]], [x,y,z]);
sol2 := solve([sys2[1][1],sys2[2][1]], [x,y,z]);

sys3 := MatrixMatrixMultiply(m-Matrix([[eigenvalues1[3],0,0],[0,eigenvalues1[3],0],[0,0,eigenvalues1[3]]]), Matrix([[x],[y],[z]]));
%solve([sys3[1][1],sys3[2][1],sys3[3][1]], [x,y,z]);
sol3 := solve([sys3[1][1],sys3[2][1]], [x,y,z]);

Old_Asso_eigenvector1 := Matrix([[rhs(sol1[1][1]),rhs(sol2[1][1]),rhs(sol3[1][1])],[rhs(sol1[1][2]),rhs(sol2[1][2]),rhs(sol3[1][2])],[rhs(sol1[1][3]),rhs(sol2[1][3]),rhs(sol3[1][3])]]);
Old_Asso_eigenvector2 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3b), InputMatrix3b)):
Old_Asso_eigenvector3 := Eigenvectors(MatrixMatrixMultiply(Transpose(InputMatrix3c), InputMatrix3c)):

% b <= c, a <= c, c := Old_Asso_eigenvector1, a := Old_Asso_eigenvector3, b := Old_Asso_eigenvector2
testa := HilbertConj(Old_Asso_eigenvector3[2], Old_Asso_eigenvector1);
testb := HilbertDisj(Old_Asso_eigenvector3[2], Old_Asso_eigenvector1);
testc := HilbertConj(Old_Asso_eigenvector2[2], Old_Asso_eigenvector1);
testd := HilbertDisj(Old_Asso_eigenvector2[2], Old_Asso_eigenvector1);

sysa := testa[1][1] = Old_Asso_eigenvector3[2][1][1];
sysb := testb[1][1] = Old_Asso_eigenvector1[2][1][1];
sysc := testc[1][1] = Old_Asso_eigenvector2[2][1][1];
sysd := testd[1][1] = Old_Asso_eigenvector1[2][1][1];

solve(sysa, xxx);

Please Wait...