Question: Why create rtable, apply algorithm, then convert to Matrix, instead of using Matrix from start?

I noticed this in Student:-NumericalAnalysis:-Romberg, here are the lines of interest:

The question  is: Why create rtable, apply algorithm, then convert to Matrix at end? Why not replace line 4 below with Matrix command from start? Could not the same thing be done using Matrix from the start?

-----------------------------------------
proc(expr, var, a, b, n)
local f, R, j, k, i, oldDigits;
   4   R := rtable(1 .. n,1 .. n,('storage') = ('triangular')['lower']);  #Why not create Matrix here?
   6   R[1,1] := evalf(1/2*(b-a)*(f(a)+f(b)));
   7   for k from 2 to n do
   8     R[k,1] := 1/2*evalf(R[k-1,1]+(b-a)/(2^(k-2))*add(f(a+(2*i-1)*(b-a)/(2^(k-1))),i = 1 .. 2^(k-2)))
       end do;
  10   for j from 2 to n do
  11     for k from j to n do
  12       R[k,j] := evalf(4^(j-1)*R[k,j-1]-R[k-1,j-1])/(4^(j-1)-1)
         end do
       end do;
  13   R := evalf[oldDigits](R);
  14   return convert(R,Matrix,('shape') = ('triangular')['lower']) #Why not use Matrix from the start?
end proc
------------------------------------------

Maple 18.02

Please Wait...