Question: How to solve it symbolically?

How to solve the equation
2^(sin(x)^4-cos(x)^2)-2^(cos(x)^4-sin(x)^2) = cos(2*x)
symbolically? The solve command produces a weird answer. Evalfing all its values, one sees
0.7853981634, -0.7853981634, 2.356194490, -2.356194490,

1.570796327 - 1.031718534 I, -1.570796327 + 1.031718534 I,

1.570796327 + 1.031718534 I, -1.570796327 - 1.031718534 I,

0.7853981634, -0.7853981634, 2.356194490, -2.356194490,

1.570796327 - 1.031718534 I, -1.570796327 + 1.031718534 I,

1.570796327 + 1.031718534 I, -1.570796327 - 1.031718534 I


The identify command
interprets the real solutions on -Pi..Pi as -3*Pi/4, -Pi/4, Pi/4, 3*Pi/4
(for example,
identify(2.356194490);

3*Pi/4 ).
Is it possible to obtain these with Maple in a simpler way?

PS. Mathematica 10 does the job.

PPS. So does even Mathematica 7.

Please Wait...