Question: How can I solve these linear equations analytically ?

Hello guys

I have a coupled linear differentional equation which are in the 4th order. they are shown in the below:

P:=phi(x):
Q:=psi(x):

eq1:=a11*diff(P,x,x,x,x)+a22*diff(P,x,x)+a33*P+a44*diff(Q,x,x)+a55*Q:
eq2:=a44*diff(P,x,x)+a55*P+a66*diff(Q,x,x)+a77*Q:

eq1:=0:
eq2:=0:

The boundary values for this coupled equation are:
phi(a)=sigma1,phi(-a)=sigma1,diff(P,x)(a)=0,diff(P,x)(-a)=0,psi(a)=sigma2,psi(-a)=sigma2

Now consider:

a11:=6.36463*10^(-10):
a22:=-1.22734*10^(-9):
a33:=3.48604*10^(-10):
a44:=2.94881*10^(-11):
a55:=-5.24135*10^(-11):
a66:=-1.03829*10^(-9):
a77:=4.86344*10^(-10):
when I use dsolve for deriving a good answer in this equation, there are six real roots .How can I solve it with these boundary condition?

I need to extract phi(x) and psi(x) from this coupled equation.

Thanks

 

Please Wait...