Question: How can I get the exact result from interation with delta function

Hi all!

F is a delta function:

F:=delta(x-x[0])*delta(y-y[0])

I want it be expaned through trigonometric series:

F:=sum(sum(Q[k*l]*sin(l*Pi*x/a)*sin(k*Pi*y/b), k = 1 .. infinity), l = 1 .. infinity)

So I want to get every Q:

Q[k, l] := `assuming`([4*(int(int(f[z1]*sin(l*Pi*x/a)*sin(k*Pi*y/b), x = 0 .. b), y = 0 .. a))/(a*b)], [k::posint, l::posint, a > 0, b > 0])

But it result in (when x[0]:=a/2, y[0]:=b/2):

4*(int(int(F[0]*exp(I*omega*t)*delta(x-x[0])*delta(y-y[0])*sin(l*Pi*x/a)*sin(k*Pi*y/b), x = 0 .. b), y = 0 .. a))/(a*b)

 

I wonder HOW CAN I GET THE EXACT RESULT:Q[k, l] := 4*sin(l*Pi/a)*sin(k*Pi/b)/(a*b)

THANKS!

Please Wait...